
José Miguel Horcas José Ángel Galindo
Richard Comploi-Taupe Lidia Fuentes (Eds.)

ConfWS 2023
25th International Workshop on Configuration

Málaga, Spain, September 6-7, 2023
Proceedings

© 2023 for the individual papers by the papers’ authors. Copying permitted for private and
academic purposes. Re-publication of material from this volume requires permission by the
copyright owners.

Editors’ addresses:
Universidad de Málaga
E.T.S. Ingeniería Informática
Bulevar Louis Pasteur, 35. Campus de Teatinos
29071 Málaga, Spain

horcas@uma.es, jagalindo@us.es, richard.taupe@siemens.com, lfuentes@uma.es

Preface

The 25th International Workshop on Configuration (ConfWS 2023) is a vibrant hub for
researchers and industry professionals interested in configuration technology. The product
configuration field refers to the arrangement, composition, or setup of various components
or elements within a system, product, or solution. The need for configuration is wide-ranging
beyond software in today’s life.

We are proud that the Configuration Workshop (ConfWS 2023) is celebrating its 25th
anniversary. This year, it is hosted by the University of Málaga in Spain as a stand-alone two-
day event where high-quality research in all configuration-related technical areas is presented.
The program includes special sessions about visualization and configuration, configuration
tasks, constraint programming, configuration applications, answer set programming (ASP),
and product configuration.

There were 18 papers submitted for peer review to ConfWS 2023. 16 papers were selected
for publication in these proceedings after a review by three independent reviewers per paper,
15 as regular papers and 1 as a position statement paper. One more paper was accepted as a
one-page abstract for presentation in the workshop (Lothar Hotz, Rainer Herzog, Yibo Wang,
and Stephanie Von Riegen: “HydrA - A Hybrid Architecture for Adaptive, Monitoring-based
Bottom-up Configuration”). An additional paper was invited to be presented as a keynote
(Michel Aldanondo and Elise Vareilles: “After 25 years in the product configuration field,
some remaining topics that interest us”).

The ConfWS 2023 introduced the figure of “Award Chair” in the organization committee, a
role played by Michel Aldanondo (Université de Toulouse, France), who was in charge of
managing the selection of the best paper awards in a two-phase audience vote at the end
of the workshop. This forum presents awards to the best papers since ConfWS 2015. This
year, in ConfWS 2023, the Best Paper Award winner was “Visualization in Configurators:
Reflections for Future Research” by Enrico Sandrin and Cipriano Forza, and the Best
Student Paper Award winner was “Product Variant Master in the Construction Industry: A
Synthesis of Construction Product Platforms” by Irene Campo Gay and Lars Hvam.

We thank the authors for their submissions, the program committee for their hard work,
the University of Málaga and the ITIS Software for supporting this event, the E.T.S.
Ingeniería Informática for the space to host the event, and SIEMENS for sponsoring
ConfWS 2023. The following projects by FEDER/Ministry of Science and Innovation/Junta
de Andalucía/State Research Agency, and EU, also supported the workshop: TASOVA PLUS
research network (RED2022-134337-T), IRIS (PID2021-122812OB-I00), LEIA (UMA18-
FEDERJA-157), Data-pl (PID2022-138486OB-I00), METAMORFOSIS (FEDER_US-
1381375), and DAEMON (H2020-101017109).

September 2023 José Miguel Horcas, José Ángel Galindo,
Richard Comploi-Taupe, Lidia Fuentes

3

Workshop Chairs

José Miguel Horcas, University of Málaga, Spain
José A. Galindo, University of Seville, Spain
Richard Comploi-Taupe, Siemens, Austria
Lidia Fuentes Fernández, University of Málaga, Spain

Award Chair

Michel Aldanondo, Université de Toulouse - IMT Mines Albi, CGI Albi, France

Program Committee

Lothar Hotz, Hamburger Informatik Technologie-Center, Germany
Ángel Jesús Varela Vaca, University of Seville, Spain
Abdourahim Sylla, Université Grenoble Alpes, France
Andreas Falkner, Siemens, Austria
Elise Vareilles, ISAE SUPAERO Toulouse, France
Yue Wang, Hang Seng University, Hong Kong
Gerhard Friedrich, Alpen-Adria-Universität Klagenfurt, Austria
Alexander Felfernig, Graz University of Technology, Austria
Albert Haag, Product Management GmbH, Germany
Lars Hvam, Technical University of Denmark, Denmark
Sara Shafiee, Technical University of Denmark, Denmark
Franz Wotawa, Graz University of Technology, Austria
David Benavides, University of Seville, Spain
Tomas Axling, Tacton, Sweden
Tomi Mänistö, University of Helsinki, Finland
Jean-Guillaume Fages, Cosling, France
Enrico Sandrin, University of Padova, Italy
Thorsten Krebs, Encoway, Germany
Chiara Grosso, Sant’Anna School of Advanced Studies-Pisa, Health Science Research
Center, Italy
Alois Haselboeck, Siemens, Austria
Markus Stumptner, University of South Australia, Australia
Mónica Pinto, University of Málaga, Spain
Inmaculada Ayala, University of Málaga, Spain

Volunteers

Laura Panizo, University of Málaga, Spain
María Fernández Márquez, University of Málaga, Spain

4

Contents

Visualization in Configurators: Reflections for Future Research
Enrico Sandrin, Cipriano Forza 8

User Interface Expert for Configurators
Enrico Sandrin, Gerhard Leitner, Cipriano Forza 12

Specifying Configurable Videos with Feature Models
Sebastian Lubos, Alexander Felfernig, Viet-Man Le 22

Solving Constraint Satisfaction Problems with Database Queries: An Overview
Alexander Felfernig, Viet-Man Le, Albert Haag, Sebastian Lubos 29

Game-based Configuration Task Learning with ConGuess: An Initial Empirical
Analysis
Andreas Hofbauer, Alexander Felfernig 34

Collaborative Recommendation of Search Heuristics For Constraint Solvers
Damian Garber, Tamim Burgstaller, Alexander Felfernig, Viet-Man Le, Sebastian
Lubos, Trang Tran, Seda Polat-Erdeniz 38

Solving Multi-Configuration Problems: A Performance Analysis with Choco
Solver
Benjamin Ritz, Alexander Felfernig, Viet-Man Le, Sebastian Lubos 45

Decision Heuristics in a Constraint-based Product Configurator
Matthias Gorenflo, Tomáš Balyo, Markus Iser, Tobias Ostertag 51

Identifying Potential Applications of Service Configuration Systems in a Logis-
tics Company
Erika Marie Strøm, Tine Meidahl Münsberg, Lars Hvam 60

Multi-level configuration in smart governance systems
Salvador Muñoz-Hermoso, David Benavides, Francisco Jose Dominguez Mayo 67

5

Dynamic Aggregates in Expressive ASP Heuristics for Configuration Problems
Richard Comploi-Taupe, Gerhard Friedrich, Tilman Niestroj 75

Towards a formalization of configuration problems for ASP-based reasoning:
Preliminary report
Nicolas Rühling, Torsten Schaub, Tobias Stolzmann 85

Interactive Configuration with ASP Multi-Shot Solving
Richard Comploi-Taupe, Andreas Falkner, Susana Hahn, Torsten Schaub, Got-
tfried Schenner 95

PERFECT: PErformant and Robust read-to-fly FlEet ConfiguraTion: from
robot to mission plan
Elise Vareilles, Stéphanie Roussel, Gauthier Picard 104

Construction of Decision Diagrams for Product Configuration
Maxim Popov, Tomáš Balyo, Markus Iser, Tobias Ostertag 108

Product Variant Master in the Construction Industry: A Synthesis of Construc-
tion Product Platforms
Irene Campo Gay, Lars Hvam 118

6

7

Visualization in Configurators: Reflections for Future
Research

Enrico Sandrin1 and Cipriano Forza1

1 University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy

Abstract
The increasing attention and investments in augmented reality (AR), virtual reality (VR), and mixed
reality (MR) further highlight the importance of graphic representations as communication tools.
However, numerous online configurators lack advanced visualization and very few utilize virtual reality.
Considering the expense associated with advanced visualizations, it becomes crucial to understand the
incremental utility of such visualizations within the configuration process. This positioning paper aims
to call for and pave the way towards a deeper understanding of the role and value of visualization in
configurators, not limiting to AR, VR, and MR but considering all forms of visualization.

Keywords
Configurator, product visualization, virtual reality, value1

1. Introduction

"A picture is worth a thousand words!" This statement
resonates with many of us, reflecting the widely
recognized power of visual representations in
effectively conveying concepts. For example, in the
communication of a product for sale, it is highly
beneficial to have effective and realistic visualizations
of the product and its features [1]. The increasing
investments in augmented reality (AR), virtual reality
(VR), and mixed reality (MR) [2] further confirm the
importance of graphic representations [3].

In the context of product configurators, a primary
objective is to provide clear and easy-to-understand
information about the choices, their impact on the
overall product, and the resulting final product [4].
Many configurators employ visualizations of product
parts or the entire product to help customers make
informed choices [5]. However, numerous online
configurators lack advanced visualization techniques
and even fewer utilize virtual reality. Interestingly,
many configurators without advanced visualization
techniques still perform well in achieving their
purpose. Therefore, there is no clear dominant
visualization that companies can refer to.

Considering the differences in costs associated
with the various product visualizations, it would be
highly beneficial to know the benefits of the various
product visualization modes in the different contexts,
as well as the related implementation costs and
challenges. Unfortunately, we are far from this ideal
knowledge, with the consequent problem of limited

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain

 enrico.sandrin@unipd.it (E. Sandrin); cipriano.forza@unipd.it (C.
Forza)

 0000-0001-9170-0683 (E. Sandrin); 0000-0003-4583-2962 (C.
Forza)

© 2023 Copyright for this paper by its authors. The use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

support provided to practitioners in making choices
about product visualization in configurators.

This positioning paper aims to stimulate a
scientific discussion to address the above-mentioned
problem within the configurator development and
usage community. Through our reflections, we aim to
call for and pave the way towards a deeper
understanding of the role and value of product
visualization in configurators. When it will be
available, this understanding will support companies
in choosing visualizations for their configurators.

This discussion is particularly opportune now,
given the growing attention to and availability of
advanced solutions for visualizing configured products
[e.g., 6, 7]. We suggest framing this discussion
considering that the availability of powerful
visualizations does not imply their profitability in all
contexts and that, consequently, a company needs to
assess them within its specific context and for specific
purposes.

2. The importance of
visualization in product
customization

Product visualization is gaining importance in product
customization. As product configuration takes place
within the broader context of product customization,
we begin our reflection by considering the following
current trends.

First, customers, especially those who purchase
custom products, demand more visual support. Visual

8

experiences guide people’s judgement, decision, ability
to learn and retain information (90% of what we
process is visual; we respond 60,000 times faster to
imagery than text; 65% of the world is composed of
visual learners) [3]. In today's market, potential
customers have become increasingly accustomed to
the visualization of products. Di et al. [1] provided
evidence that images play a significant role in
increasing buyer attention, trust, and conversion rates.
Specifically, their research suggests that increasing the
number of product images, which enhances the overall
visual representation of the product, effectively
improves sell-through. This result highlights the
importance of providing a comprehensive visual
experience to potential buyers to drive better sales
outcomes [1]. This change in consumer behavior
highlights the importance of visualization in helping
customers customize products according to their
individual needs [8]. During the customization
process, it is crucial for customers to have a clear
understanding of how the characteristics of the
product align with their preferences to minimize any
potential regret associated with their purchase
decision [4]. By providing visual representations and
interactive tools, companies can enable customers to
make informed choices and ensure that the
customized product meets their expectations.
Effective visualization not only enhances the overall
customization experience, but also mitigates concerns
of post-purchase regret.

Second, companies have perceived this need and
feel the need to invest in this direction. Big companies
and brands that customize products such as
Volkswagen, Nike, Ray-Ban with their investments in
product visualization and with their interest in
advanced product visualization project witness that
they have perceived the customer need of seeing
visually their products. But also SMEs that offer
personalized products are perceiving the need to
improve their product visualization [9].

Third, visualization technologies are making huge
progresses. Product visualization technologies (AR,
VR, etc.) are making incredible improvements [10]. For
example, the launch of Apple Vision Pro, which tracks
a person's eye movements and responds accordingly,
and its integration with the Mac world, offers vast
cutting-edge possibilities for users while being
accessible.

Fourth, AR, VR, and MR are expected to have a fast
growth in shopping. In 2028, the AR, VR and MR
market will be nine times more than in 2021 [2].
Consumer confidence rises by 4% globally when using
immersive technologies [11]. 71% of shoppers think
they would shop more often if they used AR apps [12].
61% of shoppers said they prefer to choose stores with
AR over those without it [12]. 55% of shoppers said AR
makes shopping more fun and exciting [12]. 83% of
shoppers point to product images as the most
influential factor in their purchasing decision [13]. The
use of VR to build virtual online change rooms can help
retailers improve conversion rates by more than 6.4%,
increase order value by 1.6%, reduce fulfillment costs
by 5%, and lower returns by 5.2% [14]. Virtual
presence is something that is becoming increasingly
important in online activities [15].

3. Virtual reality and
configurators

The previous section justifies the relevance of
visualization and, in particular, visualization
advancements (such as VR, AR, MR) in product
customization. Given the importance of visualization
for product customization and configurators for mass
customization, we would expect a lot of research on
the use of visualization in configurators. Vice versa,
current research on product visualization in the
configuration process is limited, with a focus on
advanced visualizations while neglecting the more
commonly used basic forms of visualization.

The literature on product configuration has been
paying attention to VR/MR/AR since 2003, and a great
increase in attention started more recently in 2015.
More specifically, by using the SCOPUS database and
looking at this literature in five-year intervals, we can
find the following trend with a five-year time frame: 1
publication (2000-2004), 3 publications (2005-2009),
2 publications (2010-2014), 8 publications (2015-
2019), and 5 publications (2020-2023).

Most of this literature investigates the possibility
of applying advanced visualization by developing and
demonstrating feasibility of new applications and
approaches [16-25]. Some publications, still focused
on the feasibility, go further by considering
capabilities, potentials, and usefulness of advanced
visualization technologies in configurators [e.g., 26, 27].

Finally, five publications (mostly recent) focus
more on investigating the benefits of adopting
advanced visualization technologies than showing the
possibility of using them [6, 7, 28-30]. To this last set
of papers, we should add Hvam and Ladeby [5] that
even do not focus on the benefits, consider different
possibilities of advanced visualization and call for
considering the relative difference in benefits while
designing a visual configurator.

Surprisingly, no articles on the level of adoption of
various visualization solutions and technologies are
provided. Limited discussion of different benefits of
different visualization solutions is provided. No
comparison of different investment requirements and
implementation difficulties is provided. Additionally,
consideration of suitability for different company sizes
and skills is limited.

4. Visualization in actual
configurators

The presence of different product visualization modes
for configurators is recognized [e.g., 5]. Unfortunately,
a systematic and comparative characterization of
these modes is not available. Below we recall and
briefly describe a number of these modes. We rely on
our knowledge, accumulated over years through the
analysis of hundreds of online sales configurators, on a
recent survey on the presence of configurator
functionalities in almost 100 Italian and Austrian
SMEs, and on the working with companies.

Augmented reality allows one to see the product in
a real context of use, in a real world environment, in a

9

room, etc., for example, furniture in the customer’s
living room.

Virtual try-on allows one to see the product on the
user’s face or body. Examples of products that can use
this technology include makeup, personal accessories,
clothing, and shoes.

Virtual reality allows one to interact with and
experience virtual products by creating a fully
immersive virtual environment. Users can examine the
product from different angles, change configurations,
and assess its features, all within a simulated
environment. Examples can be virtual showrooms of
custom cars and interior design configurators.

3D walk-through allows one to virtually visit an
environment (e.g. an apartment).

3D models allow one to view products from
different angles and perspectives (e.g., footwear,
jewelry, cars, furniture).

360 view allows one to explore a product from all
angles. Users can interactively rotate the view
horizontally and vertically to see the product from
different perspectives.

2D image represents the product in two-
dimensional graphical representation. It can be a
drawing or a sketch.

Other modalities are video and animations of the
real product or of the virtual image of the product,
photo of the real product or virtual image of the
product (e.g., rendering), cross-section views to see the
internal structure or components.

Additionally, many techniques exist to interact
with the configurator and see the effects of the user
customization actions on the customized product. For
example, interactive configuration allows users to
manipulate certain product attributes directly on the
image itself (e.g., users can click on different parts of a
product image to change colors or select additional
features). Live previews allow one to dynamically
update the visual representation of the product
depending on the user selections. The product
visualization can change simultaneously with the
modification of the chosen options or not. The product
can be set in motion or not. The product visualization is
done only at the end of the user configuration process
or can also be done during the choice selection process.

5. Opportunities for future
research and conclusions

The information and reflections presented up to this
point have highlighted that: (1) The ability to offer
suitable visual information to customers is
increasingly important, even more when products are
customized, eventually using an online sales
configurator. (2) Many product visualization modes
can be applied in configurators, both innovative (e.g.,
AR, VR, and MR) and established ones (e.g., 2D images
and 3D models). (3) The business needs to which the
visualization should respond are various (e.g.,
providing an approximate idea or a very detailed and
realistic description of a product). (4) The business
contexts in which to apply the visualization modes can
be very different depending on many variables (e.g.,
customers, company size). (5) Studies investigating

the suitability of the various visualization modes for
the various business needs and contexts are lacking.

Therefore, an important research opportunity
consists of providing a comprehensive and
comparative description of the various product
visualization modes in configurators and investigating
the effectiveness and challenges of different
visualization modes across business needs and
contexts. By describing and comparing the various
forms of product visualization, as well as their utility
and challenges in different contexts, research could
help companies make well-informed choices regarding
the adoption of visualization technologies in their
configuration processes.

Let us conclude with a final consideration on the
positioning of this line of research. Although exploring
the new possibilities offered by virtual, mixed and
advanced reality is crucial for technological
advancements, it is equally important to provide
managerial guidance to companies to make informed
decisions regarding product visualization in
configurators. Assessing the adoption levels of
different technological solutions and understanding
how users appreciate these solutions can provide
valuable insights to companies. This information is not
only valuable to companies but also helps researchers
understand which aspects of technologies meet or fail
to meet the needs of companies.

Acknowledgements

The authors thank (1) Farzaneh Bagheri Shahzadeh
Aliakbari for her insights on the importance of
visualization in customization focusing on the use of
VR, AR, and MR; (2) Andreas Falkner for discussions
on the relevance of this issue for companies; and (3)
Universiy of Padova for the financial support Projects
BIRD217418, DOR2271783, and DOR2334949.

References

[1] W. Di, N. Sundaresan, R. Piramuthu, A. Bhardwaj,
Is a picture really worth a thousand words? - on
the role of images in e-commerce, Proceedings of
the 7th ACM international conference on Web
search and data mining, New York, New York, USA,
Association for Computing Machinery, 2014, pp.
633–642. doi: 10.1145/2556195.2556226.

[2] SkyQuest Technology, Global AR/VR/MR market,
2022. URL: https://www.skyquestt.com/report/ar-
vr-mr-market.

[3] ThreeKit, The visual economy, 2023. URL:
https://www.threekit.com/ebook/the-visual-
economy#part1.

[4] A. Trentin, E. Perin, C. Forza, Sales configurator
capabilities to avoid the product variety paradox:
construct development and validation, Computers
in Industry 64 (2013) 436-447.
doi: 10.1016/j.compind.2013.02.006.

[5] L. Hvam, K. Ladeby, An approach for the
development of visual configuration systems,
Computers & Industrial Engineering 53 (2007)
401-419. doi: 10.1016/j.cie.2007.05.004.

10

[6] F. Turner, I. Welch, The mixed reality toolkit as the
next step in the mass customization co-design
experience, International Journal of Industrial
Engineering and Management 10 (2019) 191.

[7] Y. Lin, S. Yu, P. Zheng, L. Qiu, Y. Wang, X. Xu, VR-
based product personalization process for smart
products, Procedia Manufacturing 11 (2017)
1568-1576. doi: 10.1016/j.promfg.2017.07.297.

[8] Srushti, Why should you show your product
before it is manufactured! The power and
importance of product visualization, 2017. URL:
https://srushtiviz.com/blog/why-should-you-
show-your-product-before-it-is-manufactured-the-
power-and-importance-of-product-visualization/.

[9] S. Suzic, E. Sandrin, N. Suzic, C. Forza, A. Trentin,
Product configuration activities in SMEs and their
digitalization: preliminary results of a survey
study, in C. Forza, L. Hvam, A. Felfernig (Eds.),
Proceedings of the 22nd International
Configuration Workshop, September 10-11,
Vicenza, Italy, 2020, pp. 106-113.

[10] C. Flavián, S. Ibáñez-Sánchez, C. Orús, The impact
of virtual, augmented and mixed reality
technologies on the customer experience, Journal
of Business Research 100 (2019) 547-560. doi:
10.1016/j.jbusres.2018.10.050.

[11] Accenture, Try it. Trust it. Buy it., 2020.
[12] H. Ebbesen, C. Machholdt, Digital reality changes

everything: step into the future, Deloitte
Development LLC (2019).

[13] D. Ward, Product visuals for Magento with
Threekit, 2020.
URL: https://www.threekit.com/blog/product-
visuals-for-magento-with-threekit.

[14] A. Startup, 50+ v-commerce statistics you need to
know in 2023, 2023.
URL: https://www.stylight.com/insights/news/50-
v-commerce-statistics-you-need-to-know/.

[15] L. D. Hollebeek, M. K. Clark, T. W. Andreassen, V.
Sigurdsson, D. Smith, Virtual reality through the
customer journey: framework and propositions,
Journal of Retailing and Consumer Services 55
(2020) 1-12. doi: 10.1016/j.jretconser.2020.102056.

[16] M. Mengoni, D. Raponi, R. Raffaeli, A web-enabled
configuration system for interior design, Computer-
Aided Design and Applications 12 (2015) 753-764.
doi: 10.1080/16864360.2015.1033341.

[17] M. Mondellini, S. Arlati, S. Mottura, V. Colombo, E.
Biffi, A. Davalli, M. Sacco, A usability study of an
application to configure virtual reality training
environments for wheelchair users, Computer-
Aided Design and Applications 20 (2023) 134-
144. doi: 10.14733/cadaps.2023.S6.134-144.

[18] L. Potseluyko, F. Pour Rahimian, N. Dawood, F.
Elghaish, A. Hajirasouli, Game-like interactive
environment using BIM-based virtual reality for
the timber frame self-build housing sector,
Automation in Construction 142 (2022) 1-18. doi:
10.1016/j.autcon.2022.104496.

[19] A. Romani, M. Levi, Parametric design for online
user customization of 3D printed assistive
technology for rheumatic diseases, in L. T. De
Paolis, P. Bourdot (Eds.), Augmented Reality,
Virtual Reality, and Computer Graphics, Springer,
Cham, Switzerland, 2020, pp. 174-182. doi:
10.1007/978-3-030-58468-9_14.

[20] P. Novak, P. Kadera, M. Wimmer, Model-based
engineering and virtual commissioning of cyber-
physical manufacturing systems —
Transportation system case study, Proceedings of
the 22nd IEEE International Conference on
Emerging Technologies and Factory Automation
(ETFA), September 12-15, Limassol, Cyprus, IEEE,
2017, pp. 1-4. doi: 10.1109/ETFA.2017.8247743.

[21] M. Gebert, W. Steger, R. Stelzer, K. Bertelmann,
Meta-model for VR-based design reviews,
Proceedings of the 21st International Conference
on Engineering Design (ICED 17) Vol 4: Design
Methods and Tools, , August 21-25, Vancouver,
Canada, 2017, pp. 337-346.

[22] A. Bachvarov, S. Maleshkov, P. Häfner, J. Katicic,
Design-by-the-customer through virtual reality,
Proceedings of the 4th International Conference
on Advanced Research and Rapid Prototyping,
Leiria, Portugal, 2009, pp. 561-566.

[23] C. Calderon, M. Cavazza, D. Diaz, A new approach
to virtual design for spatial configuration
problems, Proceedings of the 7th International
Conference on Information Visualization, London,
UK, 18-18 July 2003, IEEE, 2003, pp. 518-523. doi:
10.1109/IV.2003.1218034.

[24] C. Calderón, M. Cavazza, D. Diaz, CLP a technology
for the interactive resolution of spatial
configuration tasks in a virtual environment,
Journal of Information Technology in
Construction 11 (2006) 325-341.

[25] I. Graessler, P. Taplick, Supporting creativity with
virtual reality technology, Proceedings of the
Design Society: International Conference on
Engineering Design 1 (2019) 2011-2020. doi:
10.1017/dsi.2019.207.

[26] Y. Liu, Y. Zhang, S. Zuo, W.-T. Fu, BoatAR: a multi-
user augmented-reality platform for boat,
Proceedings of the 24th ACM Symposium on
Virtual Reality Software and Technology,
November 28 – December 1, Tokyo, Japan,
Association for Computing Machinery, 2018, pp. 1-
2, Article 74. doi: 10.1145/3281505.3283392.

[27] F. Górski, P. Buń, R. Wichniarek, P. Zawadzki, A.
Hamrol, Immersive city bus configuration system
for marketing and sales education, Procedia
Computer Science 75 (2015) 137-146. doi:
10.1016/j.procs.2015.12.230.

[28] M. Fiorentino, M. Ricci, A. Evangelista, V. M.
Manghisi, A. E. Uva, A multi-sensory in-store
virtual reality customer journey for retailing: a
field study in a furniture flagship store, Future
Internet 14 (2022) 1-12.
doi: 10.3390/fi14120381.

[29] M. Simoni, A. Sorrentino, D. Leone, A. Caporuscio,
Boosting the pre-purchase experience through
virtual reality. Insights from the cruise industry,
Journal of Hospitality and Tourism Technology 13
(2022) 140-156. doi: 10.1108/JHTT-09-2020-0243.

[30] R. Rolland, E. Yvain, O. Christmann, E. Loup-
Escande, S. Richir, E-commerce and web 3D for
involving the customer in the design process: the
case of a gates 3D configurator, Proceedings of the
Virtual Reality International Conference, March
28-30, Laval, France, Association for Computing
Machinery, 2012, pp. 1-8, Article 25. doi:
10.1145/2331714.2331743.

11

User Interface Expert for Configurators

Enrico Sandrin1, Gerhard Leitner2 and Cipriano Forza1

1 University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy
2 University of Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria

Abstract
A user interface (UI) expert for configurators is a specialist who focuses on designing and optimizing
the interfaces of configurator systems. Configurators are tools that allow users to customize or
personalize products or services according to their specific preferences and requirements. The role of a
UI expert in enabling users to perform such customization processes is therefore crucial in today's
digital landscape. As technology continues to advance and user expectations grow, user interfaces
become an essential component of any product or service, with regard to the product/service itself or
in its selling. A UI expert provides specialized knowledge and skills to create intuitive and user-friendly
interfaces that enhance the overall user experience. Therefore, companies that want to implement or
already use configurators benefit from understanding and applying the specific competencies of UI
experts for configurators. The present paper sheds light on the tasks, individual competencies, and
training requirements of the UI expert for configurators in an industrial context. In addition, the profile
is also compared with European standard descriptors.

Keywords
Mass customization, configuration, configurator, user interface expert, professional profile, individual
competencies 1

1. Introduction

Configurators can be observed as an interface between
companies and their customers. They allow the
customization or personalization of products or
services according to the customers’ specific
preferences and requirements. The user interface (UI)
plays a critical role in this context, because, as pointed
out in Carroll [1]: “The interface connects the technical
system and the user, and it therefore has a potentially
big impact on the success and failure of the human-
machine system as a whole” [1: p. 55]. Well-designed
UIs are of specific importance in product configurators
[2], as they are increasingly used by companies to
initially consult clients to save scarce human
resources. Challenges related to bad UIs are frequently
reported [e.g. 3, 4]. For example, an un-user-friendly
interface is the most cited cause of difficulties in using
product configurators in the survey of Zhang and Helo
[3] and lack of usability is among the worst defects of
online configurators in the survey of Leclercq et al. [4].
Therefore, the role of an expert responsible for the UI
of configurators has become essential in recent years
because of the spread of configurators guiding
customers and supporting company personnel
through the customization process (besides desktop
environments also on mobile devices, digital kiosk
systems, etc.), in the product/service itself or in its

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain

 enrico.sandrin@unipd.it (E. Sandrin); gerhard.leitner@aau.at (G.
Leitner); cipriano.forza@unipd.it (C. Forza)

 0000-0001-9170-0683 (E. Sandrin); 0000-0002-3084-0727 (G.
Leitner); 0000-0003-4583-2962 (C. Forza)

© 2023 Copyright for this paper by its authors. The use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

selling. A central task of UI experts is to bridge the gap
between technology and users [5]. They understand
the needs, behaviors, and preferences of the target
audience and translate them into design decisions.
This goes beyond the characteristics of the interface
alone and covers all relevant aspects of user
experience (UX) [6]. By, for example, conducting user
research, applying user-centered design processes
(UCD), and related methods (e.g. prototyping, usability
testing) [7], UI experts ensure that the interface meets
the users' requirements and expectations and fits in
the context of use. UI experts bring specialized
knowledge and skills to create intuitive and easy-to-
use interfaces, for example, by making it easier for
users to navigate and interact with the system on
different digital platforms (desktop, web, mobile). By
taking into account related standards, guidelines, and
interaction patterns it is possible to flatten the learning
curve, improve efficiency, and minimize errors, all of
them resulting in increased user satisfaction. A
positive UX leads to greater user engagement, customer
loyalty, and ultimately business growth [8, 9].

User interface experts for configurators pay
specific attention to the mechanisms of configuration,
for instance, the complexities involved in configuring
products and translate that understanding into an
interface that supports the specific needs of customers
in this context (e.g. enhanced navigation aids in the
form of wizards, corresponding overview / detail

12

visualizations, etc.). The professional portfolio of the
UI expert involves layout definition activities, graphic
and dialog design, and customization activities in
product configuration systems [10]. In addition, it
includes the evaluation of user interaction and
experience and derives suggestions for improvements.
Thus, the UI expert for configurators analyzes all
important aspects of human-machine interaction, as
well as the users’ perceptions of system
characteristics, covered in the specifications of
usability engineering [11] and UX [12]. Besides the
skills related to the characteristics of the UI and
interaction, the UI expert for configurators possesses
the appropriate soft skills to work in an
interdisciplinary team and to communicate with users,
involve them in development processes, understand
and satisfy their different requirements and needs. In
addition to knowledge and skills in ICT, they must
understand human aspects that can influence
interaction with a configuration system.

Unfortunately, notwithstanding the importance of
the UI expert for configurators and their peculiarities
in terms of knowledge and skills required, there is no
discussion undergoing in the configurator community
about this professional profile and how it could be
developed in different organizational contexts and
through training curricula. The Configuration
Workshop is an appropriate place to start a joint
academic and practitioner discourse on this
professional figure. This is because this is a discussion
place where the discussion on UIs for configurator has
been on the table for several years [e.g. 6, 13, 14, 15].
This discussion should spread to other places where
the characteristics and importance of the UI for
configurators has been discussed [e.g. 2, 15, 16-18].

The objective of this paper is to start a scientific
discussion on the professional profile of an UI expert
for configurators in an industrial context. This paper
provides a description of the activities and individual
competencies that refer to this professional figure, as
well as the contents of an educational concept and
training activities required to develop such a
professional figure.

The idea presented is based on the personal
experiences of the authors in consulting and training,
as well as on the experiences of third parties and the
information collected by the authors over more than
20 years of activity with configurators in Austria and
Italy. This knowledge has been integrated with
academic literature and with the descriptions of
professional figures taken from recognized
frameworks. The results have been discussed in-depth
with seven companies (mostly with entrepreneurs),
one training and transfer center, and one industrial
association of small and medium-sized enterprises
(SMEs).

2. Theoretical background

In today’s digitalized world, user interfaces play a
critical role as they play an essential role in building a
bridge between technology and users [5]. The role of
UI experts is to ensure that these interfaces meet user
requirements and expectations, thus improving
aspects of usability, such as making it easier for users

to navigate and interact with the system [5, 19]. In
particular, UI experts play a vital role in creating
interfaces that help users solve complex tasks, such as
in the context of configurable products. The central
challenge in this regard is to create interfaces that are
aesthetically pleasing despite the complexity of the
basic tasks they support. According to related models
[cf. e.g. 20], UI experts therefore have to have a deep
understanding of general interface design principles
and specific requirements of different platforms (e.g.
desktop, mobile) as well as of psychological aspects
related to, for example, color theory, typography, and
visual hierarchy. They carefully design layouts,
evaluate alignments, spacing, and the selection of
visual elements to create an optimal UX based on an
interface that is visually appealing and consistent with
a corporate’s visual and overall identity. A visually
pleasing interface can evoke positive emotions,
establish trust, and enhance the overall perception of
the product or service. To achieve these results, the UI
expert has to collaborate intensively with different
departments and employees of a company, but
specifically with the other members of the
development team, such as UX experts, developers,
and product managers. The team cooperatively
ensures that the UI design is aligned with overall UX
requirements, the company-specific strategy, and
technical feasibility. The knowledge of UI experts in
usability and interaction design helps make informed
decisions on different levels, for example, regarding
the placement of elements or the utilization of
interaction patterns such as responsive design across
different devices and platforms.

To be able to assume the described role, the UI
expert for configurators typically has a background as
a professional interface designer who specializes in
configurator environments, responsible for creating
UIs of software systems using front-end prototyping
tools or integrated development environments (IDEs).

Product configurators represent a special category
of human-computer systems and therefore require a
deeper understanding and knowledge beyond
standard UI development knowledge. Configurators
are software applications that not only provide the
selection of existing standard products but also
support the customization of services and products
and the creation of new product variants. Application
areas are, for example, sales configuration processes
and/or technical configuration processes [e.g. 21, 22].
In the case of sales configuration, product
configurators assist a potential customer or a
salesperson who interacts with the customer to fully
and correctly specify a product solution among all
possible solutions offered by the company. In the case
of technical configuration, product configurators
support the creation of a technical documentation that
a company uses to create a desired customer solution.

The market offers a significant number of software
packages that allow companies to create their own
sales and technical configuration solutions.
Alternatively, a company can create its own product
configurator from scratch. In either case, the design of
UIs that enable interaction between human users and
an ICT system in the background is crucial. In contrast
to other types of UI, configurators usually consist of a
more complex interface architecture because there is a

13

need to support different actors in different parts of a
configuration process. Potential users of these
interfaces can be, for example, product specialists,
sales professionals, knowledge engineers, designers,
installers, system administrators, or end customers.

User interfaces of sales configurators supporting
these different types of user, therefore, play a specific
role in this context, specifically in the direction of end
customers [4]. In contrast to the interfaces addressing
experts, end-user interfaces should adequately convey
the configuration possibilities without overwhelming
the customer, thus significantly influencing the
customer's perceived benefits when configuring
customized products. The related literature identifies
five configurator interface capabilities that are
extremely important in improving the customers’
perceived benefits of customized products and
customization experiences [23-27]: (1) focused
navigation (to quickly focus a potential customer’s
search on the solutions in the product space of a
company that are most relevant to the customer); (2)
flexible navigation (to enable users to easily and
quickly modify a product configuration they have
previously created or are currently creating); (3)
benefit-cost communication (to effectively
communicate the consequences of configuration
decisions made by a potential customer in terms of
advantages and disadvantages); (4) user-friendly
product space description (to adapt a company's
product space description to the individual
characteristics of a potential customer and the
situational characteristics of his or her use of the sales
configurator); (5) easy comparison (to help users
compare previously created product configurations).

These sales configurator capabilities increase the
benefits perceived by customers when they configure
customized products using the sales configurator
(benefits of utilitarian, uniqueness, self-expressiveness,
hedonic, and creative-achievement) [24, 26]. Since
these capabilities, at least some of them, have a
synergistic effect on the benefits perceived by the
customer [23], it is important to balance them in the
design of a configurator UI.

More recently, customers' need for social
interaction during configuration activity has also been
recognized as an important aspect to consider when
designing a sales configurator [28]. This additionally
supports the need of a broad range of related skills
emphasized before, which an UI expert for
configurators has to have. In addition to technical
computer knowledge about software programming, e-
commerce, websites, and other applications and tools
that interact with the configurator (e.g. social media,
chatbots, artificial intelligence-related applications, 3D
graphics), this expert must have know-how in
marketing, sales, human factors, social and
psychological aspects that may influence the
effectiveness of the product configurator.

Another peculiar characteristic of configurator UIs
is that there are many different solutions for creating
configurators’ UIs [e.g. 29, 30], therefore, is difficult to
identify guidelines [29, 31] and effective unique
standards for creating such UIs [29, 32, 33]. Moreover,
configurator UIs can change rapidly even from year to
year [30]. All these characteristics require to be able to
identify the most effective UI design for a particular

configuration context and to be ready to continuous
redesign and updating of the UI.

In summary, the UI expert for configurators must
be able to interact with, understand, and satisfy
different types of stakeholders in a development
process, specifically users with different requirements,
backgrounds, and expectations [4, 34-36].

3. Method

The main objective of this work is to gather and
disseminate information on the topic mainly to players
in the industrial sector, such as SMEs, who do not have
the resources and possibilities to access academic
literature and other sources of related information. In
comparison to the academic field or large enterprises
which have in-company resources to deal with the
problem, the presented approach addresses the dearth
of prior research focusing on the role of UI expert for
product configurators in specific industrial contexts.
The empirical knowledge of this attempt is mainly
based on the personal knowledge of the authors of this
paper, complemented by a theoretical foundation
based on the related academic literature.

The authors have between 15 and 24 years of
experience in the fields of studying and/or guiding the
implementation of configuration systems,
collaborating and exchanging experiences with
configurator experts, training individuals to design
and implement configuration systems, and evaluating
and guiding businesses in the eventual
implementation of mass customization mechanisms
using configuration systems. Additionally, they have
researched the effects of online sales configurator
capabilities on users’ perceived benefits in using those
configurators. The authors together developed deep
insights into all of the pertinent problems in this area,
thanks to the collection of expertise of executors,
managers, consultants, trainers, and researchers on
these themes. They worked with practitioners mainly
in Italy and Austria, although they had multiple
occasions to interact across several European
countries. They have also conducted research on
organizational design and individual competencies for
mass customization that helped in identifying relevant
activities of the role and the related individual
competencies.

The original proposal for UI experts for
configurators activities, their individual competencies,
and proposed training activities was created jointly by
two authors. Subsequently, this proposal underwent a
number of revisions where each of the three authors
suggested integration or changes. To be able to see the
proposal with fresh eyes, we completed three distinct
cycles of changes, spaced widely apart from each other.
Two specialists, one working for a training and
transfer center and the other for an SMEs association,
have since conducted final checks.

Essential individual competencies were
determined considering the processes and related
activities and returning to the authors' experiences on
that topic. Individual competencies were grouped into
(i) knowledge, (ii) skills, and (iii) transversal skills and
competences. These categories are aligned to
European reference frameworks, such as ESCO

14

(European Skills, Competences, Qualifications and
Occupations), where they have the same meaning as in
the present paper. In this paper, the term knowledge -
“is composed of the facts and figures, concepts, ideas
and theories which are already established and
support the understanding of a certain area or subject”
[37: p. 7] and the skills “are defined as the ability and
capacity to carry out processes and use the existing
knowledge to achieve results” [37: p. 7]. Transversal
skills and competences (TSCs) are understood as
“learned and proven abilities which are commonly
seen as necessary or valuable for effective action in
virtually any kind of work, learning or life activity.
They are considered/labelled ‘transversal’ because
they are not exclusively related to any particular
context (job, occupation, academic discipline, civic or
community engagement, occupational sector, group of
occupational sectors, etc.)” [38: p. 5].

The reason for choosing this approach is to allow
starting a discussion not only among academics but
also with training centers and practitioners. This
categorization has been utilized to preserve a language
widely used in the organizations where we operate
while still preserving comparability to past research
and international and European classifications. Finally,
standard descriptors were used to characterize the
figure of the UI expert for configurators. The use of
standard descriptors aims to make it easier to
recognize competencies across different regions and
systems.

To strengthen the validity of our findings, the
profile was tested with top managers and
entrepreneurs of SMEs. Five of these assessments
were supervised by non-academics working for an
SME association, and two were guided by one of the
authors. These validity checks allowed external
control by informed persons who were not affiliated
with the authors. The evaluations sought to determine
whether the professional figure's description was
understandable and meaningful, whether this figure is
useful in companies that have to develop configurators
and respective UIs, and whether the proposed training
paths are relevant and flexible enough to adapt to
different contexts.

4. Activities of the UI expert for
configurators

The main activities of the UI expert for configurators
can be grouped into four parts with the following focal
points; (a) understanding of user needs, (b)
development of information architecture, (c)
development of wireframes and prototypes, and (d)
detailed visual interface design.

Understanding of user needs covers the
understanding of the user requirements and needs
(applying user research and workflow analysis) in
order to ensure usability and overall UX.

Development of information architecture deals with
the organization of information in an understandable
way, translating the requirements into a structure, for
example, on the basis of style guides, design systems,
design patterns, and attractive UI elements.

Development of wireframes and prototypes involves
the initial development, the testing, and iterative
further development and refinement of wireframes
and prototypes.

Visual interface design consists of four subsets of
activities. The first one is UI development planning
covering the content to be conveyed, utilized controls,
visual design aspects, branding, appropriate
navigation aids, benefit-cost communication, user-
friendly description of the product space, and the
support of easy comparison. The second subset covers
the proper application of visual principles: aesthetics
in UI, gestalt principles (similarity, proximity, etc.),
grouping and organization, hierarchy. The third one
deals with the identification of design problems, taking
into account the characteristics and presentation of
the product from a business, technical, production, or
management perspective, as well as the configurator's
interdependencies with other business processes and
systems, business requirements, and the development
of workable solutions. The fourth subset involves
stakeholders in the presentation of content and design
solutions for configurators and incorporates their
feedback into the new design.

5. Individual competencies of
the UI expert for
configurators

To help the reader to understand which specific
individual competencies are needed, the presentation
of these competencies of the UI expert for
configurators is exposed by the fundamental activities.
For each activity, we should have reported the
transversal skills and competences too; however, since
these skills and competences tend to be common
across multiple activities, we reported them
separately in Subsection 5.5.

5.1. Understanding user needs to
improve usability and overall UX

Understanding user needs to improve usability and
overall UX requires the ability to refer to user research
from different disciplines and the ability to conduct
empirical evaluations on requirements and actual ICT
use. Specific knowledge and skills are needed to
perform this task well.

Knowledge. The required knowledge includes: (a)
interdisciplinary Design Sciences Research
perspectives; (b) UX research methods, such as:
usability tests; interviews; card sorting (for
categorization and hierarchy); eye-tracking and click
tests; multivariate and A/B testing; desirability
studies; expert/heuristic reviews; surveys; diary
studies (recording behaviors or thoughts); personas;
participatory design workshops, focus groups, social
media listening, interviews; (c) customer research on,
for example, benefits, needs and requirements in the
sales configuration process; (d) specific requirements
of product configurator users (company-internal /
external).

15

Skills. The required skills include: (a) designing a
User Centered Design Process (UCD), for example,
involving the activities of designing, planning, and
conducting UX and usability studies; (b) defining and
planning of accompanying activities of empirical social
research, such as communication activities; (c)
involvement of different stakeholders (company
representatives, industrial partners, funding
organizations, public authorities); (d) integrating end
customers on the basis of an UCD-process, e.g. for
requirements and needs elicitation or as participants
of usability studies; (e) analyzing the results of
usability studies and proposing findings; (f)
communicating methodological approaches and
results through engaging presentations; (g) initially
developing and refining design solutions (wireframes
/ paper prototypes) based on research activities.

5.2. Information architecture

Information architecture requires one to allocate the
contents and procedures of the configurator and
organize them according patterns of hierarchy or
taxonomy, defining the basic concepts for navigating
the website.

Knowledge. The required knowledge includes: (a)
organizational schemes and structures; (c) labeling
systems; (d) navigation systems; (e) search systems;
(f) platform capabilities and specifics (e.g. mobile [iOs,
Android], desktop [Windows, MacOs, Linux]).

Skills. The required skills include: (a) analyze the
configuration process and its dependencies on other
business processes and systems; (b) organize content
into taxonomies and hierarchies of information based
on content strategy; (c) communicate conceptual
overviews and overall website organization to the
design team and clients; (d) research and design the
fundamental concepts of website navigation; (e) define
standards and specifications for the handling of
semantic HTML markup, as well as for the format and
handling of textual content; and (f) design and
implementation of search optimization standards and
strategies.

5.3. Development of wireframes and
prototypes

Development of wireframes and prototypes requires
developing, testing, and iterating to refine the
wireframe.

Knowledge. The required knowledge includes: (a)
characteristics and representation of the product
from: a commercial point of view, a technical point of
view, the production point of view, the management
control’s point of view; and (b) characteristics and
representation of the production process.

Skills. The required skills include: (a) translating
concepts into wireframes; (b) defining technical
requirements; (c) developing creative ideas; (d)
drawing design sketches; (e) translate requirements
into a visual design; (f) create storyboards to generate
ideas for solutions to user requirements; (g) propose
and outline a set of visual concepts both on paper and
using prototyping software applications (e.g. Figma,

Adobe XD); (h) create wireframes on paper and in
digital format; (i) create paper prototypes to develop
interactive designs; (j) design low- and high-fidelity
prototypes; (k)design sketches of user flows.

5.4. Visual interface design

Visual interface design requires the development of
the UI, the proper application of visual principles, the
identification of design problems, and the
participation of stakeholders in the presentation and
incorporation of their feedback.

Knowledge. The required knowledge includes: (a)
competitor solutions (standards) for the configuration
process; (b) customer benefits, needs, and
requirements for the sales configuration process; (c)
user requirements for the product configurator; (d)
internal and external user requirements for a
configuration system; (e) configurator software
programming; (f) web programming; (g) application
usability; (h) graphic design editing software; (i)
human-computer interaction foundations; (j) software
UI design patterns; (k) software interaction design.

Skills. The required skills include: (a) work on
cross-platform applications to develop UXs for mobile
phones, tablets, and computers; (b) collaborate with
other designers, product design and development
teams, business analysts, engineers, and project
managers; (c) collaborate regularly with clients to
ensure that projects meet their requirements and key
business objectives; (d) attend meetings to discuss and
review project progress.

5.5. Transversal skills and
competences

An UI expert for configurators also needs the following
transversal skills and competences, which are not
exclusively related to any particular activity but are
useful in multiple areas of his or her work: customer
orientation; problem solving; teamwork: working in a
results-oriented group; attention to order and quality.

6. Description of the profile and
reference areas with
standard descriptors

Competences, knowledge, and skills related to the
profile of the UI expert for configurators are found,
organized by category, in ESCO (European Skills,
Competences, Qualifications and Occupations) [39],
the multilingual European classification of skills,
competences and occupations. ESCO functions as a
dictionary, describing, identifying, and classifying
occupations and occupational skills relevant to the EU
labor market, education, and training.

Standard descriptors that are most close to this
new profile are identified in Table 1 in the Appendix.
Table 1, reports the correspondence between the ESCO
profiles, the NUP ISTAT profiles [40] and the areas of
activities (ADA) of the “Atlante del Lavoro” (atlas of
labor) [41] associated with these ISTAT profiles,

16

emphasizing the relationship with the UI expert for
configurators. For the sake of completeness and
precision, Table 1 contains hyperlinks to the ESCO
standard terms used and the web pages where these
terms are defined.

6.1. Description using ESCO profiles

The three ESCO profiles closest to the UI expert for
configurators are the UI designer, the UI developer,
and the UX analyst. The descriptions of these three
profiles are given below.

User interface designer. Code: 2513.3. Description:
User interface designers are in charge of designing
user interfaces for applications and systems. They
perform layout, graphics and dialogues design
activities as well as adaptation activities.

User interface developer. Code: 2512.5. Description:
User interface developers implement, code, document
and maintain the interface of a software system by
using front-end development technologies.

User experience analyst. Code: 2511.19. Description:
User experience analysts assess client interaction and
experience and analyze users' behaviors, attitudes, and
emotions about the usage of a particular product, system
or service. They make proposals for the improvement of
the interface and usability of products, systems or
services. In doing so, they take into consideration the
practical, experiential, affective, meaningful and valuable
aspects of human–computer interaction and product
ownership, as well as the person's perceptions of system
aspects such as utility, ease of use and efficiency, and user
experience dynamics.

Other profiles that may have some similarities with
the UI expert for configurators, though less than the
first three, are the information and communications
technology user support technicians, the webmaster,
and the product and services manager.

7. Training activities

Training should be tailored depending on whether one
or more companies are involved, whether knowledge
of mass customization and product configurators is
limited or advanced, whether a professional
configurator is available or not, whether all possible
interfaces are considered or only a subset, etc.

Training should also include learning in which the
learner plays an active role, possibly both in evaluating
and creating specific product configuration interfaces.
This can obviously significantly increase the time
required for training. It might be useful, especially for
small companies, to analyze configuration websites,
evaluate actual UIs, and create UIs.

From the above, a benchmark training course will
last between 60 and 120 hours. Note that the minimum
duration of the training course may be sufficient for
companies that already have UX and UI design skills
and need specialization in the specific features of a
product configurator. Furthermore, the duration of the
accompanying training course may also be
significantly longer than the maximum reference
duration if the involved persons do not have
comprehensive UX and UI design skills.

For the profile of UI expert for configurator, the
proposed training includes the following content.

7.1. Mass customization and
configurational approach

The training on mass customization and the
configurational approach includes: (a) variety,
customization, and mass customization strategies; (b)
degree of product customization; (c) configurational
approach and efficient customization; (d) standard,
configurable, and special products.

7.2. Product configuration and its
digitization

The training on product configuration and its
digitization includes: (a) activities in the product
configuration process; (b) relationships between
organizational context and configuration activities; (c)
digitization and automation of the configuration
process.

7.3. Product configuration systems

The training on product configuration systems
includes: (a) architecture of configuration systems; (b)
degree of automation of the configuration process; (c)
IT solutions for the configuration process; (d) product
models used in the configuration process; (e)
configurators and connection/integration with other
enterprise information systems (CRM, PDM / PLM,
PIM, MPCS, Social Software, etc.).

7.4. Users of a configuration system
and their needs

The training on characteristics of users of a
configuration system and their needs includes: (a)
perspectives of users and designers (conceptual
models), overview of methods to involve users in a
development process, such as usability testing,
interviews, surveys; (b) different types of research to
determine users’ characteristics and needs:
quantitative and qualitative, behavioral and
attitudinal; (c) data analysis and result presentation.

7.5. Visual characteristics of
configurator UIs

The visual characteristics of configurator UIs include,
for example: aesthetics; gestalt principles; grouping
and organization; hierarchy; grid and information
density; typography and readability; icons; colors;
illustration; presentation of data in configurators.

7.6. Designing the UX

Designing the UX includes analyzing UX aspects that go
beyond actual interaction (e.g. platform preference

17

(iOS, Android), peer group identification, social
network, etc.) based on the following activities: (a)
evaluating user data; (b) creating personas; (c)
working with scenarios and storyboards; (d) creating
paper prototypes; (e) implementation planning and
support.

7.7. Features and functionalities of
configurator UIs

The features and functionalities of the configurator UI
include: (a) how the features of sales configurators
improve the customer's perceived value in configuring
a custom product; (b) how the features of a technical
configurator enhance the customer's understanding of
technical feasibility (and limitations); (c) how specific
desires and requirements that deviate from the
standard can have a direct impact on pricing; and (d)
how customers themselves can manipulate the
price/functionality ratio of the product.

8. Discussion and conclusion

Individual competency research for employees
working in mass customization situations is very
limited ([42], [43], [44]). Despite the fact that previous
work provides examples and considerations for a
better understanding of the issue of individual
competencies in a customization environment, they do
not consider professional figures specifically designed
for the mass customization context with the only, very
recent, exception of the configuration manager [44]. In
particular, previous studies do not consider a
professional figure such as the UI expert for
configurators, which is crucial when mass
customization is realized with the use of configurators.
This paper contributes to the effort of investigating
individual competencies for mass customization by
introducing the UI expert for configurators as a
professional figure.

More precisely, we describe the activities in which
this expert participates and has to perform in a leading
position. We then gave suggestions for the knowledge,
soft skills, and technical skills that this expert should
possess. We compare the figure with current
competency classification systems at the national and
European levels, and we utilize these systems'
standard descriptors to characterize the UI expert for
configurators.

The evaluation of this figure with entrepreneurs,
managers, a SMEs association, and a training and
transfer center managers showed that all companies
engaged in customization revealed a company’s need
for the listed individual competencies. This is an
important empirical result. It shows that the need for
these competencies is perceived by the target
audience/industry. As a consequence, research on this
professional figure would be welcomed by
practitioners, since it corresponds to their needs.

Equally interesting is to see what the seven SMEs
said when they contrasted our proposal with their
specific organization design situation. A company
recognized the presence of an employee with the
competencies listed above, even though his position

was not specified with a name that reminds the UI
expert for configurators. Other companies, less
advanced in mass customization, thought that this
professional figure includes so many competencies
that it becomes very difficult to find adequate
personnel immediately employable for an SME.
However, they recognize the possibility to hire an
external person with adequate knowledge and skills to
make him/her productive in a reasonable amount of
time in an SME environment. Other companies said
that because of their small size it was difficult for them
to get the required competencies from outside and that
they have to develop them internally. Other companies
said that they have two or more employees that
together have the competencies covered by this figure.
A company with a considerable amount of variety but
not so high to justify the adoption of a configurator
underlined that, in situations similar to theirs, a similar
figure is needed, but without the specific knowledge of
configurators. Hence, the practical world in the
considered SMEs presents a highly differentiated
situation with respect to building up of the needed
competencies and their distribution across employees.

Therefore, our confrontation with seven SMEs, an
industry association of SMEs and a training and
transfer center provided a strong message, i.e. the
essential need for the listed competencies, although
their development and implementation pose a highly
complex challenge, a challenge that depends on the
context. This result constitutes an extensive
opportunity and area for future research, which will be
even more important in the future given the trend
towards a greater digitalization.

With this paper, we started a conversation about
the UI expert for configurators in businesses of various
sizes, and we think this issue is relevant both
scientifically and practically. To complement this
paper, future studies might examine the effects of
various training methods in developing certain
professional figure competencies. Another research
opportunity may be to examine how certain individual
competencies improve a company's capability of mass
customization or lessen the difficulties associated with
configurator development.

Even though the activities and the competencies of
the professional figure of the UI expert for
configurators have been exposed to external scrutiny
of industry experts and entrepreneurs, this scrutiny
has to be considered as a preliminary one. More
extensive scrutiny is needed to strengthen the results
obtained and to link them to different company
contexts and company performances. We have seen
how the company size availability of human resources
may influence the development of such a figure or split
its competence across different employees. Further
empirical evidence based on case studies as well as on
surveys would be beneficial. Finally, lab experiments
could be conducted to assess different teaching
strategies to build the identified competencies.

Acknowledgements

The authors acknowledge financial support from the
MC 4.0 Interreg V-A Italia–Austria project, Project ID:
ITAT 1057. We would like to thank our MC 4.0 project

18

colleagues and partners, particularly Elena Fassa,
Enrico Bressan, and Alessio Trentin, for their critical
and constructive help.

References

[1] J. M. Carroll (Ed.), HCI models, theories, and
frameworks: toward a multidisciplinary science,
Morgan Kaufmann Publishers, Elsevier Science,
San Francisco, CA, 2003.

[2] G. Leitner, A. Felfernig, P. Blazek, F.-C. Reinfrank, G.
Ninaus, User interfaces for configuration
environments, in A. Felfernig, L. Hotz, C. Bagley, J.
Tiihonen (Eds.), Knowledge-Based Configuration:
From Research to Business Cases, Morgan
Kaufmann, Elsevier, Waltham, MA, 2014, pp. 89-106.

[3] L. L. Zhang, P. T. Helo, An empirical study on
product configurators' application: implications,
challenges, and opportunities, in J. Tiihonen, A.
Falkner, T. Axling (Eds.), Proceedings of the 17th
International Configuration Workshop,
September 10-11, Vienna, Austria, 2015, pp. 5-10.

[4] T. Leclercq, E. K. Abbasi, B. Dumas, M.-A.
Remiche, P. Heymans, Essential expectations of
users of web configurators: an empirical survey,
Proceedings of the ACM on Human-Computer
Interaction 6 (2022) 1-26.
doi: 10.1145/3534519.

[5] J. Tidwell, Designing interfaces, 2nd ed., O'Reilly
Media, Inc., Sebastopol, Canada, 2011.

[6] I. Campo Gay, L. Hvam, Integrating user-centered
practices in configuration systems development:
framework and conceptual modelling, in M.
Aldanondo, A. Falkner, A. Felfernig, M. Stettinger
(Eds.), Proceedings of the 23rd International
Configuration Workshop, Sep 16–17, Vienna,
Austria, 2021, pp. 58-64.

[7] ISO, ISO 9241-210:2019 Ergonomics of human-
system interaction — Part 210: Human-centred
design for interactive systems, 2019. URL:
https://www.iso.org/standard/77520.html.

[8] F. F. Reichheld, T. Teal, The loyalty effect: the
hidden force behind growth, profits and lasting,
Boston, MA, 1996.

[9] L. D. Hollebeek, M. S. Glynn, R. J. Brodie,
Consumer brand engagement in social media:
conceptualization, scale development and
validation, Journal of Interactive Marketing 28
(2014) 149-165.
doi: 10.1016/j.intmar.2013.12.002.

[10] A. Felfernig, M. Mandl, J. Tiihonen, M. Schubert, G.
Leitner, Personalized user interfaces for product
configuration, in C. Rich, Q. Yang, M. Cavazza, M.
Zhou (Eds.), Proceedings of the 15th
international conference on Intelligent user
interfaces, Hong Kong, China, Association for
Computing Machinery, New York, NY, 2010, pp.
317–320. doi: 10.1145/1719970.1720020.

[11] J. A. Jacko (Ed.), Human computer interaction
handbook: fundamentals, evolving technologies,
and emerging applications, 3rd ed., CRC Press,
Taylor & Francis Group, Boca Raton, FL, 2012.

[12] M. Hassenzahl, N. Tractinsky, User experience - a
research agenda, Behaviour & Information
Technology 25 (2006) 91-97.

doi: 10.1080/01449290500330331.
[13] K. Pilsl, M. Enzelsberger, P. Ecker, Towards more

flexible configuration systems: enabling product
managers to implement configuration logic, in A.
Felfernig, C. Forza, A. Haag (Eds.), Proceedings of
the 16th International Configuration Workshop,
September 25-26, Novi Sad, Serbia, 2014, pp. 55-58.

[14] J. Tiihonen, T. Männistö, A. Felfernig, Sales
configurator information systems design theory,
in A. Felfernig, C. Forza, A. Haag (Eds.),
Proceedings of the 16th International
Configuration Workshop, September 25-26, Novi
Sad, Serbia, 2014, pp. 67-74.

[15] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D.
Jannach, M. Meyer, G. Petrone, R. Schäffer, W.
Schütz, M. Zanker, Customizing the interaction
with the user in on-line configuration systems, in
M. Aldanondo (Ed.), Proceedings of the
Configuration Workshop of 2002 European
Conference of Artificial Intelligence, July 22-23,
Lyon, France, HAL, 2002, pp. 119-124.

[16] L. Ardissono, A. Felfernig, G. Friedrich, D.
Jannach, R. Schäfer, M. Zanker, Intelligent
interfaces for distributed web-based product and
service configuration, in N. Zhong, Y. Yao, J. Liu, S.
Ohsuga (Eds.), Web Intelligence: Research and
Development. First Asia-Pacific Conference, WI
2001, Maebashi City, Japan, October 23-26, 2001,
Proceedings, Springer, Berlin, Heidelberg, 2001,
pp. 184-188. doi: 10.1007/3-540-45490-X_21.

[17] L. Hvam, K. Ladeby, An approach for the
development of visual configuration systems,
Computers & Industrial Engineering 53 (2007)
401-419. doi: 10.1016/j.cie.2007.05.004.

[18] Q. Boucher, G. Perrouin, J.-M. Davril, P. Heymans,
Engineering configuration graphical user
interfaces from variability models, in J.-S. Sottet,
A. García Frey, J. Vanderdonckt (Eds.), Human
Centered Software Product Lines, Springer,
Cham, Switzerland, 2017, pp. 1-46. doi:
10.1007/978-3-319-60947-8_1.

[19] B. Shneiderman, C. Plaisant, M. S. Cohen, S. Jacobs,
N. Elmqvist, N. Diakopoulos, Designing the user
interface: strategies for effective human-computer
interaction, 6th ed., Pearson, Hoboken, NJ, 2016.

[20] M. Van Welie, G. C. Van Der Veer, A. Eliëns,
Breaking down usability, Interact (1999) 613-620.

[21] L. L. Zhang, S. Shafiee, Developing separate or
integrated configurators? A longitudinal case
study, International Journal of Production
Economics 249 (2022) 1-17.
doi: 10.1016/j.ijpe.2022.108517.

[22] C. Forza, F. Salvador, Managing for variety in the
order acquisition and fulfilment process: the
contribution of product configuration systems,
International Journal of Production Economics
76 (2002) 87-98. doi: 10.1016/S0925-
5273(01)00157-8.

[23] E. Sandrin, Synergic effects of sales-configurator
capabilities on consumer-perceived benefits of
mass-customized products, International Journal
of Industrial Engineering and Management 8
(2017) 177-188.

[24] E. Sandrin, A. Trentin, C. Grosso, C. Forza,
Enhancing the consumer-perceived benefits of a
mass-customized product through its online

19

sales configurator: an empirical examination,
Industrial Management & Data Systems 117
(2017) 1295-1315. doi: 10.1108/IMDS-05-2016-
0185.

[25] A. Trentin, E. Perin, C. Forza, Sales configurator
capabilities to avoid the product variety paradox:
construct development and validation,
Computers in Industry 64 (2013) 436-447. doi:
10.1016/j.compind.2013.02.006.

[26] A. Trentin, E. Perin, C. Forza, Increasing the
consumer-perceived benefits of a mass-
customization experience through sales-
configurator capabilities, Computers in Industry
65 (2014) 693-705.
doi: 10.1016/j.compind.2014.02.004.

[27] E. Sandrin, C. Forza, Z. Anišić, N. Suzic, C. Grosso,
T. Aichner, A. Trentin, Shoe configurators: a
comparative analysis of capabilities and benefits,
in V. Modrak (Ed.), Mass customized
manufacturing: theoretical concepts and
practical approaches, CRC Press, Taylor &
Francis Group, Boca Raton, FL, 2017, pp. 193-
216. doi: 10.1201/9781315398983-10.

[28] C. Grosso, C. Forza, Users’ social-interaction needs
while shopping via online sales configurators,
International Journal of Industrial Engineering
and Management 10 (2019) 139-154.

[29] E. K. Abbasi, A. Hubaux, M. Acher, Q. Boucher, P.
Heymans, The anatomy of a sales configurator:
an empirical study of 111 cases, in C. Salinesi, M.
C. Norrie, Ó. Pastor (Eds.), CAiSE’13 - 25th
International Conference on Advanced
Information Systems Engineering, June 17-21,
Valencia, Spain, Springer-Verlag, Berlin,
Heidelberg, Germany, 2013, pp. 162-177. doi:
10.1007/978-3-642-38709-8_11.

[30] P. Blazek, C. Streichsbier, M. Partl, L. Skjelstad,
User interface modifications in established
product configurators, in S. Hankammer, K.
Nielsen, F. T. Piller, G. Schuh, N. Wang (Eds.),
Customization 4.0: Proceedings of the 9th World
Mass Customization & Personalization Conference
(MCPC 2017), Aachen, Germany, November 20-21,
2017, Springer International Publishing, Cham,
Switzerland, 2018, pp. 451-466.

[31] P. Blazek, M. Partl, L. Skjelstad, Learnings from
monitoring web-based product configurator
approaches in the world of customizable
products, in Z. Anišić, C. Forza (Eds.),
Proceedings of the 8th International Conference
on Mass Customization and Personalization –
Community of Europe (MCP-CE 2018),
September 19-21, Novi Sad, Serbia, Faculty of
Technical Sciences, 2018, pp. 21-26.

[32] C. Streichsbier, P. Blazek, F. Faltin, W. Fruhwirt,
Are de-facto standards a useful guide for
designing human-computer interaction
processes? The case of user interface design for
web based B2C product configurators, in R. H.
Sprague Jr. (Ed.), Proceedings of the 42nd Hawaii
International Conference on System Sciences,
January 5-8, Waikoloa, Big Island, HI, 5-8 Jan.
2009, EEE Computer Society, Los Alamitos, CA,
2009, pp. 1-7. doi: 10.1109/HICSS.2009.80.

[33] C. Streichsbier, P. Blazek, M. Partl, The impact of
the product configurator user interface on

customer purchase decisions, in Z. Anišić, C.
Forza (Eds.), Proceedings of the Proceedings of
the 6 th International Conference on Mass
Customization and Personalization in Central
Europe (MCP-CE 2014), September 24–26, Novi
Sad, Serbia, Faculty of Technical Sciences, 2014,
pp. 190-194.

[34] T. Aichner, P. Coletti, Customers’ online shopping
preferences in mass customization, Journal of
Direct, Data and Digital Marketing Practice 15
(2013) 20-35. doi: 10.1057/dddmp.2013.34.

[35] T. Aichner, B. Gruber, Managing customer
touchpoints and customer satisfaction in B2B
mass customization: a case study, International
Journal of Industrial Engineering and
Management 8 (2017) 131-140.

[36] T. Aichner, A. M. Shaltoni, The impact of
perceived advertising creativity on behavioural
intentions and quality perceptions in mass
customization, International Journal of Industrial
Engineering and Management 10 (2019) 131-
138. doi: 10.24867/IJIEM-2019-2-234.

[37] European Union, Key competences for lifelong
learning: a European reference framework,
Official Journal of the European Union 61 (2018)
7-13. doi: 10.2766/569540.

[38] M. Noack, Unpacking transversal skills and
competences, Bertelsmann Stiftung, 2021.

[39] European Commission, ESCO: European Skills,
Competences, Qualifications and Occupations,
Accessed 2023. URL: esco.ec.europa.eu/en.

[40] ISTAT, Nomenclatura e classificazione delle unità
professionali, Accessed 2023. URL:
professioni.istat.it/sistemainformativoprofessioni/c
p2011/.

[41] Istituto Nazionale per l’Analisi delle Politiche
Pubbliche, Atlante del lavoro, Accessed 2022. URL:
atlantelavoro.inapp.org/atlante_lavoro.php.

[42] C. Forza, F. Salvador, HRM policies for mass
customization: understanding individual
competence requirements and training needs for
the mass customizing industrial company, in T.
Blecker, G. Friedrich (Eds.), Mass Customization:
Challenges and Solutions, Springer, New York,
NY, 2006, pp. 251-269. doi: 10.1007/0-387-
32224-8_12.

[43] A. Trentin, T. Somià, E. Sandrin, C. Forza,
Operations managers’ individual competencies
for mass customization, International Journal of
Operations & Production Management 39 (2019)
1025-1052. doi: 10.1108/IJOPM-10-2018-0592.

[44] E. Sandrin, C. Forza, G. Leitner, A. Trentin,
Configuration manager: describing an emerging
professional figure, in A. Felfernig, L. Fuentes
(Eds.), Proceedings of the 26th ACM
International Systems and Software Product Line
Conference - Volume B, Graz, Austria, Association
for Computing Machinery, New York, NY, 2022,
pp. 193–200. doi: 10.1145/3503229.3547049.

20

Appendix

Table 1
Placement of the “user interface expert for configurators” among the ESCO profiles, the NUP ISTAT profiles, and areas of
activities of the “Atlante del Lavoro”

ESCO Profilea

(in English, German, Italian)
NUP ISTAT (ISTAT CP2011)
profiles b

“Aree di Attività” (ADA) from “Atlante del Lavoro” c
(Relevant activities for the UI expert for configurators)

2513.3 - User interface designer
- Multimedia-

Designer/Multimedia-
Designerin

- Progettista di interfacce utente

2512.5 - User interface developer
- Entwickler von

Benutzeroberflächen/Entwickl
erin von Benutzeroberflächen

- Sviluppatore di interfacce
utente

2511.19 - User experience analyst
- User Experience Analyst
- Analista della user experience

2.7.1.1.1 - Analisti e
progettisti di software

2.7.1.1.2 - Analisti di
sistema

2.7.1.1.3 - Analisti e
progettisti di applicazioni
web

ADA.14.01.01 (ex ADA.16.237.773) - Definizione e
implementazione della strategia organizzativa nell'ICT

ADA.14.01.02 (ex ADA.16.237.775) - Identificazione e
definizione delle proposte per lo sviluppo dei servizi IT

ADA.14.01.03 (ex ADA.16.238.776) - Gestione del
processo di sviluppo del business in ambito
Information Technology

ADA.14.01.04 (ex ADA.16.238.777) - Allineamento tra
strategie di business e sviluppo tecnologico

ADA.14.01.05 (ex ADA.16.238.778) - Ideazione e
definizione della specifica soluzione ICT

ADA.14.01.06 (ex ADA.16.238.779) - Supporto al
cliente per l'innovazione nell'ICT

ADA.14.01.12 (ex ADA.16.239.785) - Progettazione e
realizzazione di applicativi software multi-tier

ADA.14.01.14 (ex ADA.16.239.787) - Progettazione e
realizzazione dell'interfaccia utente

ADA.14.01.16 (ex ADA.16.239.789) - Deployment,
integrazione e verifica della soluzione ICT

3512 - Information and
communications technology user
support technicians
- Techniker für die

Anwenderbetreuung in der
Informations- und
Kommunikationstechnologie

- Tecnici per l’assistenza agli
utenti della tecnologia
dell’informazione e della
comunicazione

3514.1 - Webmaster
- Webmaster/Webmasterin
- Webmaster

3.1.2.2.0 - Tecnici esperti
in applicazioni

3.1.2.3.0 - Tecnici web

ADA.14.01.06 (ex ADA.16.238.779) - Supporto al
cliente per l'innovazione nell'ICT

ADA.14.01.12 (ex ADA.16.239.785) - Progettazione e
realizzazione di applicativi software multi-tier

ADA.14.01.14 (ex ADA.16.239.787) - Progettazione e
realizzazione dell'interfaccia utente

ADA.14.01.16 (ex ADA.16.239.789) - Deployment,
integrazione e verifica della soluzione ICT

2431.15 - Product and services
manager
- Produkt- und

Dienstleistungsmanager/Produ
kt- und
Dienstleistungsmanagerin

- Responsabile beni e servizi

2.5.1.5.2 - Specialisti nella
commercializzazione di
beni e servizi (escluso il
settore ICT)

2.5.1.5.3 - Specialisti nella
commercializzazione nel
settore delle tecnologie
dell’informazione e della
comunicazione

ADA.14.01.01 (ex ADA.16.237.773) - Definizione e
implementazione della strategia organizzativa nell'ICT

a URL: https://esco.ec.europa.eu/en
b URL: https://professioni.istat.it/sistemainformativoprofessioni/cp2011/
c URL: https://atlantelavoro.inapp.org/atlante_lavoro.php

21

Specifying Configurable Videos with Feature Models
Sebastian Lubos1, Alexander Felfernig1 and Viet-Man Le1

1Graz University of Technology, Graz, Austria

Abstract
Personalization of products is a popular aspect in various application domains, including videos. Enabling users to consume
personalized learning videos that include only individually relevant content has the potential to deliver additional benefits
in e-learning, for example, by making learning more efficient. In this paper, we present a practical approach to define
configurable videos based on feature models, as well as an integrated solution to derive personalized videos by respecting
given constraints. Additionally, the possibility to extend the configuration with interactive video elements is described to
enable an improved user experience.

Keywords
Feature Models, Configuration, Interactive Video, Personalized Video, Video Summarizing,

1. Introduction
Configuration of software, services, and products fulfill-
ing individual needs has been a popular topic of research
in recent years [1, 2]. Feature models [3] have thereby
proven to be an excellent approach to solving those chal-
lenges in a variety of domains [4], including videos [5].
The possibility to create personalized videos offers huge
potential, especially in the domains of knowledge trans-
fer and e-learning where videos are consumed to increase
know-how or study new topics.
A challenge in this area is the availability of differ-

ent learning videos on video platforms, for example,
YouTube1, covering various topics, explained to con-
sumers with individual pre-knowledge. The large variety
of options and poor possibilities to determine if videos
are relevant before consumption make it complicated
for users to find adequate videos [6]. Effective learning
videos have the characteristics to include all relevant in-
formation for a user to understand and follow the video.
At the same time, they reduce learning time by excluding
unrelated or already known information [5].

The usage of natural language queries to retrieve video
summaries [7], and more recently the integration of chat-
bots to query and interact with videos2, have been pub-
lished as a possibility to support users. While those ap-
proaches work well if users are able to specify what they
are searching for, a knowledge-based configuration of
videos [5] has been presented as a possibility to mitigate

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
Envelope-Open slubos@ist.tugraz.at (S. Lubos); alexander.felfernig@ist.tugraz.at
(A. Felfernig); vietman.le@ist.tugraz.at (V. Le)
Orcid 0000-0002-5024-3786 (S. Lubos); 0000-0003-0108-3146
(A. Felfernig); 0000-0001-5778-975X (V. Le)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.youtube.com
2e.g., https://www.ortusbuddy.ai/

this weakness, by giving the user more assistance. User
requirements are collected and used in a Constraint Satis-
faction Problem (CSP) to determine a video fulfilling the
user requirements.

Based on the findings in [5], we demonstrate a flexible
and reusable approach to define configurable videos, and
show an example instantiation that provides a personal-
ized video using the Choco solver3.

Previous work in the synthetic creation of videos has
applied video processing techniques to change the visual
content to generate artwork variants using variability
management techniques [8], and to generate multiple
video variants for algorithm test samples [9, 10, 11]. In
our approach, we preserve the video content of existing
videos and parts of videos while enhancing user experi-
ence by transforming it into a well-organized structure.
This extends the work of an online video generator tak-
ing an initial selection of video clips as seed to create
variants of humorous video segments [12], by applying
it in the domain of learning videos with additional user
requirements and more complex constraints.

The major contributions of the paper are the following.
We extend our previous work on the problem definition
of configurable videos [5], by demonstrating a practi-
cal implementation. A reusable and adaptable approach
to defining the structure of configurable videos using
feature model technologies is presented, including the
integration of a solver to generate personalized videos
with respect to specified user requirements. Furthermore,
we explain how the solution can be extended to integrate
decision points with interactive video elements [13] for
an improved individual user experience.
The remainder of this paper is organized as follows.

Our approach to specifying a configurable video is ex-
plained in Section 2. In Section 3, we present an example
configuration with specified user requirements and the
resulting video. In Section 4, the reusability and limita-

3https://choco-solver.org

22

Figure 1: Feature model of an example configurable video about the transformer model.

tion of this approach are discussed. Finally, open research
issues are discussed in Section 5 before the paper is con-
cluded with Section 6.

2. Specification of Configurable
Videos

Developing feature models is a complex task for persons
not experienced with the notation and technologies. In
order to ease the problem definition, we enable users
to define the structure of configurable videos using the
JSON notation provided in [14]. The JSON format is
heavily used in different applications, and many software
developers have experience with it. For this reason, we
expect that it will ease the future implementation of a
GUI-based editor for configurable videos, such that they
can be configured by everyday users.

Within this paper, we use the configuration of a learn-
ing video explaining the transformer model in machine
learning [15] as a running example. A transformer model
is a type of deep learning architecture designed to pro-
cess sequential data, such as text or speech, by leveraging
self-attention mechanisms. It is a popular and powerful
model for a variety of natural language processing (NLP)
applications, including, machine translation, language
understanding, and text generation.

For our example, we use videos from the Hugging Face
tutorial on NLP4 hosted on YouTube. Using those tutorial
videos, we designed a configurable video with the struc-
ture presented as feature model [3] in Figure 1. Leaves
of the model refer to single video segments and parent
features define the category. Video segments are inter-
preted as the property values of the configured video.
Following the structure, we see that each video includes
at least an explanation of the individual components of
the transformer model (encoder and decoder), followed

4https://huggingface.co/learn/nlp-course

by an explanation of the overall model. Examples of each
part can be included optionally, as well as a digression
on the carbon footprint of transformer models.
Using the formatting described in [14] the feature

model can be described in a JSON format using a straight-
forward approach. The nested JSON structure enables the
user to define the model following a top-down approach,
where for each node, an id, the type (mandatory, optional,
root), child nodes as well as sibling-relation (alternative,
or) can be defined. Furthermore, exclusions and required
properties can be specified using their id. Following the
algorithms described in [14], the JSON structure can be
translated into a valid feature model. In Figure 2, a part
of the configuration is shown as an example.

In addition to this generic approach to describing the
structure of the configurable video, information on the
included video segments is required. More specifically,
an URL where the video is available is needed. Addition-
ally, the duration of the segments in seconds is required
to define constraints for the overall duration of the gen-
erated video. This is also defined using a JSON structure,
where each key references an id of the model described
as JSON. An example is shown in Figure 3.

The definition of the configured video is then used to
instantiate a model for the CSP. We used PyCSP35 for
this purpose, which is a Python framework, to describe
models for CSPs in a declarative manner. It includes the
possibility to choose between the solver of ACE (AbsCon
Essence)6 and Choco. The generic code to use provided
JSON files for the instantiation of the configurable video,
as well as the complete example, are available in our
repository7.
Besides the description of a configurable video, user

requirements need to be collected in order to personal-
ize the video. While different possibilities, including the
assessment of pre-knowledge, are possible, we restrict

5http://pycsp.org
6https://github.com/xcsp3team/ace
7https://github.com/slubos/specifying-configurable-videos

23

{
”id”:”TransformerVideo”,
”type”:”root”,
”parent”:””,
”relation”:””,
”requires”:[],
”excludes”:[],
”children”:[

{
”id”:”Encoder”,
”type”:”mandatory”,
”parent”:”TransformerVideo”,
”relation”:””,
”requires”:[],
”excludes”:[],
”children”:[

{
”id”:”EncoderExplanation”,
”type”:”mandatory”,
”parent”:”Encoder”,
”relation”:””,
”requires”:[],
”excludes”:[],
”children”:[

{
”id”:”EncoderExplanationShort”,
”type”:”optional”,
”parent”:”EncoderExplanation”,
”relation”:”alternative”,
”requires”:[],
”excludes”:[],
”children”:[]

},
...

]
},
...

]
},
...

]
}

Figure 2: A part of the JSON definition of the configuration
aspects for the example video on transformer models.

those to the maximum video duration for our example,
assuming that the video is suitable for a beginner level.
Especially in preparation for exams, students often fol-
low the utility maximization problem [16], and try to
learn as much as possible in a limited amount of time. To
capture this requirement, the maximum acceptable video
duration of a user is collected and translated to a maxi-
mum duration constraint. The duration is determined by
summing the duration of each included video segment.

The personalized video is then generated following the
configuration task described in [5], consisting of a feature

{
”EncoderExplanationShort”: {

”url”: ”https://youtu.be/H39Z...”,
”duration”: 45

},
”EncoderExplanationLong”: {

”url”: ”https://youtu.be/MUqN...”,
”duration”: 141

},
...

}

Figure 3: A part of the JSON definition of video sources for
the example video on transformer models.

model and a defined set of user requirements [17]. The
solution of this task is a configuration, i.e., an assignment
of variables in the CSP, such that the constraints of the
model and user requirements are fulfilled [5].

In our presented approach, the variables 𝑉 state which
of the individual video segments are included in the
configured video. The respective variable domain is
{true, false}, describing the inclusion or exclusion of a
video segment. Nodes of the feature model described in
the JSON file are defined as variables. Furthermore, for
all video segments, a variable describing the duration
is defined within the domain {0, videoduration}, where
videoduration is the length of the video in seconds de-
fined in the JSON file. Using a constraint, the value of
this variable is restricted to 0 or the defined videoduration
depending on the inclusion of the segment in the con-
figured video. Further knowledge base constraints are
directly derived from the featuremodel described as JSON
file, following the algorithms described in [14].

3. Video Configuration Results
A configured video can be interpreted as a simple playlist,
i.e., the included video segments will be played in an or-
dered fashion. Table 1 shows an example of the minimal
and maximal video configuration in terms of video du-
ration of the transformer model example. Depending
on the maximum acceptable video duration of the user,
different video segments are included or excluded.

Since multiple versions can be the result of a configu-
ration task, the user has the choice to select one of the
options. Considering, for example, 250𝑠 as the maximum
acceptable duration, 15 configurations have been found.
To enable the choice, the total duration could be shown,
such that the user can select if they want to use most
of their available time or not. Alternatively, a further
explanation alternative might describe the content in
a contrastive way, for example, video A contains more
detailed explanations, while video B has more examples.

24

Transformer Video
Encoder Decoder Transformer Carbon

Foot-
print

Explanation Example Explanation Example Explanation ExampleShort Long Ex. 1 Ex. 2 Short Long Short Long
Min.
Config X X X

Max.
Config X X X X X X X X

Table 1
The examples demonstrate the minimal and maximal video configurations in terms of video duration for the transformers
model example. An X indicates that the respective video segment is part of the configuration.

Amore advanced solution is based on interactive videos
which offer an extension to classical videos by offering
several interactivity features [13]. This approach is used
to enable the user during the video consumption if parts
of the video should be included, as long as they still fulfill
the duration requirement. In terms of alternative videos,
this means a choice is presented which path is followed.
After each choice, the selection is included as a constraint,
and new paths are configured on the fly. For ”or” video
segments, the user can have the option to choose one or
both. In the case of optional segments, the user is asked
if they want to watch it.

Figure 4 sketches the possible path flow including the
decision points for the transformer video example de-
scribed with the feature model in Figure 1, given the
example requirement of 250𝑠 as the maximum accept-
able duration. Decision points in the workflow diagram
are shown with the diamond symbol. For an interac-
tive video, this can be implemented as a question, with
choices shown by the outgoing arrows, labeled with their
description. The rectangle with rounded corners indi-
cates which video is played. A circle indicates the start,
while a double-edged circle represents the end.

Each time a user takes a decision, the value is added
as a constraint to the CSP, such that the remaining paths
and options are computed dynamically while the user is
consuming the video.

4. Discussion
This paper presents a reusable approach for creating con-
figurable videos adaptable to any topic. It requires the
availability of manually structured videos by the creator,
and the specification of video sources must be updated ac-
cordingly (see Figure 3). While YouTube videoswere used
as an example, any video source could be utilized. The
video creator is responsible for adapting the model for the
configurable video to represent their desired structure
and constraints (see Figure 2). This approach is versatile
and can represent any video structure, also including
more videos and constraints. We expect the approach to
scale well for more complex videos, as the constraints are

rather simple and the number of variables is manageable.
Yet, we leave this experiment open for future work.

To simplify the process of specifying configurable
videos, a GUI-based editor could be used instead of re-
lying on the video creator’s knowledge of JSON files
and feature models. The editor would allow the user
to add videos by pasting links, then organize them into
categories using a drag-and-drop approach. Constraints
within categories could be specified using different group
types, indicating whether they are alternatives or mul-
tiple options to include. Additionally, the video creator
could designate videos as mandatory or optional. Cross-
tree constraints could be added additionally to specify the
requirement of videos from other categories. We expect
this user-friendly approach to be easily understandable,
eliminating the need for understanding feature models.
The translation of the GUI input to JSON is handled by
the application.

5. Open Issues for Future Work
One topic for future work is the implementation of the
interactive video approach described in this paper. Frame-
works for this purpose, e.g., FrameTrail8 or H5P9, offer
the possibility to define the interactive elements and use
them for playout. As we expect that this kind of video
consumption improves learning effectiveness, conduct-
ing a user study to examine this assumption is planned.
A between-subject study could be conducted, where one
group uses interactive videos, while the other views
the complete video without interaction. Questionnaires
about the video topic immediately after the video and
after a few weeks could be used to analyze the short-
and long-term learning effectiveness of the interactive
approach.

Further topics include the support of users in the defi-
nition of configurable videos. While our approach offers
the possibility to describe the structure of those, it is still
a lot of manual annotation work to describe the video,

8https://frametrail.org
9https://h5p.org/

25

Figure 4: Possible paths of the configured video example with
interactive elements. Diamonds indicate decisions users take
during video consumption, while rectangles resemble played
video segments. Not all paths are shown for simplicity.

for this purpose, options to automatize parts of this work
should be considered. This includes the automated in-
dexing of video content to ease recognition of what is
included [18, 19], as well as their semantic segmenta-
tion defining the individual video segments that can be
included ([20, 21]). Also, the possible inclusion of recom-
mendation technologies [22, 23] to support the definition
of those videos, e.g., by recommending which options
could further be included.
Finally, the inclusion of diagnoses [24, 25] should be

considered to relax situations where no solution can be
found for given user requirements. Those can help to
find a configuration that takes into account as much as
possible of the original user requirements.

6. Conclusions
With this paper, we present an initial implementation to
define and generate personalized videos using feature
models. Using an easy-to-use JSON notation, a solution
was presented that is able to add additional benefit to
knowledge transfer with videos by reusing already ex-
isting material. Following a practical example learning
video, we showed how the approach can be used, and fur-
ther extended to enable its usage with interactive videos,
which is part of our future work.

Acknowledgments
The presented work has been developed within the re-
search project Streamdiver which is funded by the Aus-
trian Research Promotion Agency (FFG) under the project
number 886205.

References
[1] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen,

Knowledge-based Configuration - From Research
to Business Cases, Elsevier, 2014.

[2] D. Sabin, R. Weigel, Product configuration frame-
works - a survey, IEEE Intelligent Systems 13 (1998)
42–49.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson,
Feature-oriented Domain Analysis (FODA) – Feasi-
bility Study, TechnicalReport CMU – SEI-90-TR-21
(1990).

[4] J. Martinez, W. K. G. Assunção, T. Ziadi, Espla:
A catalog of extractive spl adoption case studies,
in: Proceedings of the 21st International Systems
and Software Product Line Conference - Volume B,
SPLC ’17, Association for Computing Machinery,
New York, NY, USA, 2017, p. 38–41. URL: https://doi.

26

org/10.1145/3109729.3109748. doi:10.1145/3109729.
3109748 .

[5] S. Lubos, M. Tautschnig, A. Felfernig, V.-M. Le,
Knowledge-based configuration of videos using fea-
ture models, in: Proceedings of the 26th ACM
International Systems and Software Product Line
Conference - Volume B, SPLC ’22, Association for
Computing Machinery, New York, NY, USA, 2022,
p. 188–192. URL: https://doi.org/10.1145/3503229.
3547052. doi:10.1145/3503229.3547052 .

[6] A. Imran, F. Alaya Cheikh, S. Kowalski, Automatic
annotation of lecture videos for multimedia driven
pedagogical platforms, Knowledge Management
and E-Learning 7 (2015).

[7] M. Vahedi, M. M. Rahman, F. Khomh, G. Uddin,
G. Antoniol, Summarizing relevant parts from tech-
nical videos, in: 2021 IEEE International Confer-
ence on Software Analysis, Evolution and Reengi-
neering (SANER), 2021, pp. 434–445. doi:10.1109/
SANER50967.2021.00047 .

[8] J. Martinez, G. Rossi, T. Ziadi, T. F. D. A. Bissyandé,
J. Klein, Y. Le Traon, Estimating and predicting
average likability on computer-generated artwork
variants, in: Proceedings of the Companion Publi-
cation of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO Compan-
ion ’15, Association for ComputingMachinery, New
York, NY, USA, 2015, p. 1431–1432. URL: https://doi.
org/10.1145/2739482.2764681. doi:10.1145/2739482.
2764681 .

[9] M. Acher, M. Alférez, J. A. Galindo, P. Romenteau,
B. Baudry, Vivid: A variability-based tool for syn-
thesizing video sequences, in: Proceedings of the
18th International Software Product Line Confer-
ence: Companion Volume for Workshops, Demon-
strations and Tools - Volume 2, SPLC ’14, Asso-
ciation for Computing Machinery, New York, NY,
USA, 2014, p. 143–147. URL: https://doi.org/10.1145/
2647908.2655981. doi:10.1145/2647908.2655981 .

[10] J. A. Galindo, M. Alférez, M. Acher, B. Baudry, D. Be-
navides, A variability-based testing approach for
synthesizing video sequences, in: Proceedings
of the 2014 International Symposium on Software
Testing and Analysis, ISSTA 2014, Association for
Computing Machinery, New York, NY, USA, 2014,
p. 293–303. URL: https://doi.org/10.1145/2610384.
2610411. doi:10.1145/2610384.2610411 .

[11] M. Alférez, M. Acher, J. A. Galindo, B. Baudry,
D. Benavides, Modeling variability in the video
domain: Language and experience report, Soft-
ware Quality Journal 27 (2019) 307–347. URL: https:
//doi.org/10.1007/s11219-017-9400-8. doi:10.1007/
s11219- 017- 9400- 8 .

[12] G. Bécan, M. Acher, J.-M. Jézéquel, T. Menguy, On
the variability secrets of an online video genera-

tor, in: Proceedings of the Ninth International
Workshop on Variability Modelling of Software-
Intensive Systems, VaMoS ’15, Association for
Computing Machinery, New York, NY, USA, 2015,
p. 96–102. URL: https://doi.org/10.1145/2701319.
2701328. doi:10.1145/2701319.2701328 .

[13] A. Palaigeorgiou, George and Papadopoulou,
I. Kazanidis, Interactive video for learning: A
review of interaction types, commercial platforms,
and design guidelines, in: M. Tsitouridou, J. A. Di-
niz, T. A. Mikropoulos (Eds.), Technology and
Innovation in Learning, Teaching and Education,
Springer International Publishing, Cham, 2019, pp.
503–518.

[14] H. Shatnawi, H. C. Cunningham, Encoding
feature models using mainstream json technolo-
gies, in: Proceedings of the 2021 ACM South-
east Conference, ACM SE ’21, Association for
Computing Machinery, New York, NY, USA, 2021,
p. 146–153. URL: https://doi.org/10.1145/3409334.
3452048. doi:10.1145/3409334.3452048 .

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, At-
tention is all you need, Advances in neural infor-
mation processing systems 30 (2017).

[16] A. Mas-Colell, M. D. Whinston, J. R. Green, et al.,
The Utility Maximization Problem, volume 1, Ox-
ford university press New York, 1995.

[17] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon,
C. Bagley, K. Wolter, Configuration Knowledge
Representation and Reasoning, 1 ed., Elsevier B.V.,
Netherlands, 2014, pp. 41–72.

[18] Y. Deldjoo, Enhancing Video Recommendation Us-
ing Multimedia Content, Springer International
Publishing, Cham, 2020, pp. 77–89. URL: https://
doi.org/10.1007/978-3-030-32094-2_6. doi:10.1007/
978- 3- 030- 32094- 2_6 .

[19] M. Elahi, F. Bakhshandegan Moghaddam, R. Hos-
seini, M. H. Rimaz, N. El Ioini, M. Tkalcic,
C. Trattner, T. Tillo, Recommending Videos in
Cold Start With Automatic Visual Tags, Associ-
ation for Computing Machinery, New York, NY,
USA, 2021, p. 54–60. URL: https://doi.org/10.1145/
3450614.3461687.

[20] T. Tuna, M. Joshi, V. Varghese, R. Deshpande,
J. Subhlok, R. Verma, Topic based segmentation
of classroom videos, in: 2015 IEEE Frontiers in
Education Conference (FIE), 2015, pp. 1–9. doi:10.
1109/FIE.2015.7344336 .

[21] P. A. Co, W. R. Dacuyan, J. G. Kandt, S.-C.
Cheng, C. L. Sta. Romana, Automatic topic-
based lecture video segmentation, in: Inno-
vative Technologies and Learning: 5th Interna-
tional Conference, ICITL 2022, Virtual Event, Au-
gust 29–31, 2022, Proceedings, Springer-Verlag,

27

Berlin, Heidelberg, 2022, p. 33–42. URL: https://
doi.org/10.1007/978-3-031-15273-3_4. doi:10.1007/
978- 3- 031- 15273- 3_4 .

[22] A. Falkner, A. Felfernig, A. Haag, Recommenda-
tion Technologies for Configurable Products, AI
Magazine 32 (2011) 99–108.

[23] A. Felfernig, V.-M. Le, A. Popescu, M. Uta, T. N. T.
Tran, M. Atas, An overview of recommender
systems and machine learning in feature model-
ing and configuration, in: 15th International
Working Conference on Variability Modelling of
Software-Intensive Systems, VaMoS’21, Associa-
tion for Computing Machinery, New York, NY, USA,
2021. URL: https://doi.org/10.1145/3442391.3442408.
doi:10.1145/3442391.3442408 .

[24] A. Felfernig, M. Schubert, C. Zehentner, An efficient
diagnosis algorithm for inconsistent constraint sets,
AI for Engineering Design, Analysis, and Manufac-
turing (AIEDAM) 26 (2012) 53–62.

[25] A. Felfernig, R. Walter, J. Galindo, D. Benavides,
M. Atas, S. Polat-Erdeniz, S. Reiterer, Anytime Di-
agnosis for Reconfiguration, Journal of Intelligent
Information Systems 51 (2018) 161–182.

28

Solving Constraint Satisfaction Problems
with Database Queries: An Overview
Alexander Felfernig1, Viet-Man Le1, Albert Haag2 and Sebastian Lubos1

1Institute of Software Technology, Graz University of Technology, Graz, Austria
2Product Management Haag GmbH, Bad Dürkheim, Germany

Abstract
Knowledge-based configuration tasks are often solved on the basis of constraint programming. Using constraint programming
requires technical expertise regarding problem specification and – to some extent – also solution search, for example, in
terms of being confronted with the definition of search heuristics. In this paper, we show how to apply database queries to
solve knowledge-based configuration tasks. Using this approach, configuration tasks can be defined and solved without the
need of integrating a potentially new technology, but rather stick with technical infrastructures (i.e., relational databases)
already existing in the company.

Keywords
Constraint Solving, Knowledge-based Configuration, Database Queries

1. Introduction
Constraint programming (CP) [1] is based on the idea of
defining a set of problem variables, variable domains, and
related restrictions (constraints) and solving the problem
using on a constraint solver. As such, this technology is
often used for solving configuration tasks [2, 3]. There
are further approaches used for configuration knowledge
representation. For example, SAT solving [4] is based on
the idea of representing a configuration task by set of
Boolean variables where each variable represents a vari-
able domain value in the general constraint satisfaction
problem, for example, car color red is a domain value
of the variable color. In the SAT context, red would be
regarded as variable with the domain {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}. In
addition, answer set programming (ASP) is based on a
more object-oriented view on configuration knowledge
representation [5] where on the reasoning level, ASP
programs are solved using SAT solvers.

All these types of knowledge representation require ad-
ditional expertise in at least one of the areas of constraint
programming or SAT solving. Furthermore, additional
investments are needed to increase CP-related knowl-
edge of employees which is a major precondition for
making underlying technologies applicable for configu-
ration knowledge representation and reasoning. On the
other hand, relational database technologies and related

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
Envelope-Open alexander.felfernig@ist.tugraz.at (A. Felfernig);
vietman.le@ist.tugraz.at (V. Le);
albert@product-management-haag.de (A. Haag);
slubos@ist.tugraz.at (S. Lubos)
Orcid 0000-0003-0108-3146 (A. Felfernig); 0000-0001-5778-975X (V. Le);
0000-0002-1388-4904 (A. Haag); 0000-0002-5024-3786 (S. Lubos)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

query languages are wide-spread in industrial software
development projects. Our idea is to exploit the same
technologies in a different form for the representation
and solving of constraint-based configuration tasks. In
this paper, we provide an overview of different types of
knowledge representations and corresponding database
queries that can be used to support configuration tasks.
We focus on specific database queries which can be re-
garded as a conjunction of the individual constraints of
a corresponding constraint satisfaction problem.
The contributions of this paper are the following: (1)

we introduce the idea of a configuration task and a cor-
responding configuration defined and determined on the
basis of the concepts of database queries. (2) we discuss
the results of performance evaluations with existing con-
figuration benchmark knowledge bases.

The remainder of this paper is organized as follows. In
Section 2, we introduce an example of a car configuration
task defined in terms of a constraint satisfaction problem
(CSP). In Section 3, we introduce a database query based
definition of a configuration task and discuss possibilities
of table-based configuration knowledge representations.
Thereafter, in Section 4 we provide a performance com-
parison between database query based and constraint
solving based configuration. Threats to validity are dis-
cussed in Section 5. Finally, the paper is concluded with
a summary of open research issues in Section 6.

2. Example Configuration Task
Following the concepts of constraint programming [1],
a configuration task can be defined in terms of (1) finite
domain variables 𝑣𝑖 ∈ 𝑉 = {𝑣1..𝑣𝑛} (including the corre-
sponding domain definitions 𝑑𝑜𝑚(𝑣𝑖)) describing prod-
uct properties and user preferences and (2) constraints

29

Table 1
Implicit configuration space description where each (CSP) variable 𝑣𝑖 ∈ 𝑉 is represented by a single table with one attribute
𝑣𝑎𝑙 and the table entries derived from 𝑑𝑜𝑚(𝑣𝑖), for example, variable type is represented by the corresponding table type. The
corresponding database query has to take into account all constraints in 𝐶.

table type fuel skibag 4wheel pdc
attribute val val val val val
domain city,limo,combi,xdrive 4l,6l,10l yes,no yes,no yes,no

𝐶 = 𝐶𝐹 ∪ 𝐶𝑅 representing product domain-specific con-
straints 𝐶𝐹 and customer requirements 𝐶𝑅 [2].
A simplified example of a car configuration task is

the following where type represents the car type, fuel
represents the average fuel consumption, skibag indicates
the availability of a skibag, and pdc represents a parc
distance control feature. In this example, the product
domain specific constraints are 𝐶𝐹 = {𝑐1..𝑐5} and the
customer requirements are 𝐶𝑅 = {𝑐6..𝑐9} which can be
specified in a complete (all variables in 𝑉 have a value)
or incomplete fashion.

• 𝑉 = {𝑡𝑦𝑝𝑒, 𝑓 𝑢𝑒𝑙, 𝑠𝑘𝑖𝑏𝑎𝑔, 4𝑤ℎ𝑒𝑒𝑙, 𝑝𝑑𝑐}
• 𝑑𝑜𝑚(𝑡𝑦𝑝𝑒) = {𝑐𝑖𝑡𝑦 , 𝑙𝑖𝑚𝑜, 𝑐𝑜𝑚𝑏𝑖, 𝑥𝑑𝑟 𝑖𝑣𝑒}. 𝑑𝑜𝑚(𝑓 𝑢𝑒𝑙)
= {4𝑙, 6𝑙, 10𝑙}. 𝑑𝑜𝑚(𝑠𝑘𝑖𝑏𝑎𝑔) = {𝑦𝑒𝑠, 𝑛𝑜}.
𝑑𝑜𝑚(4𝑤ℎ𝑒𝑒𝑙) = {𝑦𝑒𝑠, 𝑛𝑜}. 𝑑𝑜𝑚(𝑝𝑑𝑐) = {𝑦𝑒𝑠, 𝑛𝑜}.

• 𝐶𝐹 = {𝑐1 ∶ 4𝑤ℎ𝑒𝑒𝑙 = 𝑦𝑒𝑠 → 𝑡𝑦𝑝𝑒 = 𝑥𝑑𝑟 𝑖𝑣𝑒, 𝑐2 ∶
𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑦𝑒𝑠 → 𝑡𝑦𝑝𝑒 ≠ 𝑐𝑖𝑡𝑦 , 𝑐3 ∶ 𝑓 𝑢𝑒𝑙 = 4𝑙 →
𝑡𝑦𝑝𝑒 = 𝑐𝑖𝑡𝑦 , 𝑐4 ∶ 𝑓 𝑢𝑒𝑙 = 6𝑙 → 𝑡𝑦𝑝𝑒 ≠ 𝑥𝑑𝑟 𝑖𝑣𝑒, 𝑐5 ∶
𝑡𝑦𝑝𝑒 = 𝑐𝑖𝑡𝑦 → 𝑓 𝑢𝑒𝑙 ≠ 10𝑙}

• 𝐶𝑅 = {𝑐6 ∶ 4𝑤ℎ𝑒𝑒𝑙 = 𝑦𝑒𝑠, 𝑐7 ∶ 𝑓 𝑢𝑒𝑙 = 6𝑙, 𝑐8 ∶
𝑡𝑦𝑝𝑒 = 𝑐𝑖𝑡𝑦 , 𝑐9 ∶ 𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑦𝑒𝑠}

Based on this example CP-based configuration task
representation, we will now discuss in more detail differ-
ent options to represent and solve a configuration task on
the basis of a corresponding database query definition.

3. Database Query Based
Configuration

Representing a configuration task on the basis of a
database query allows for the application of relational
database technologies for determining corresponding
configurations (solutions). We now introduce a defini-
tion of a configuration task on the basis of a database
query setting 𝑃[𝐶]𝑆 (see Definition 1). In this context, 𝑃
can be (1) a set of tables where each table represents one
𝑣𝑖 ∈ 𝑉 (“one table per variable” representation), (2) one
table including “all possible configurations” (solutions),
and (3) a set of tables representing tuples consistent with
individual constraints in 𝑐𝑖 ∈ 𝐶 (“local consistency”). Fur-
thermore, [𝐶] is the set of constraints representing the
selection criteria of the database query. Finally, 𝑆 includes
those variables 𝑣𝑖 ∈ 𝑉 representing the projection criteria

of the query, i.e., those variable values that should be
shown as result of the configuration task.

Definiton 1 (Configuration Task). A configuration
task can be defined as database query 𝑃[𝐶]𝑆. In this con-
text, 𝑃 represents all possible configurations in tabular
form (explicitly or implicitly) and [𝐶] represents the se-
lection criteria of the query in conjunctive form, i.e.,
⋀(𝑐𝑖∈𝐶) 𝑐𝑖. Furthermore, 𝑆 represents the projection at-
tributes (variables). In this context, 𝐶 = 𝐶𝑅 ∪ 𝐶𝐹 with
𝐶𝑅 representing the given customer requirements and
𝐶𝐹 representing product domain-specific constraints.

Given such a definition of a configuration task, we are
now able to introduce the definition of a configuration
(see Definition 2).

Definiton 2 (Configuration). A configuration for
configuration task is one tuple of a result of executing a
database query 𝑃[𝐶]𝑆 using the selection criteria in 𝐶 and
the projection attributes (variables) in 𝑆.

Based on Definitions 1–2, we now discuss different
ways of representing configuration knowledge in a tabu-
lar fashion. The chosen type of knowledge representation
has an impact on the way the corresponding database
query has to be formulated – for demonstration purposes,
we will include related examples.

(1) “One Table per Variable”. Using this represen-
tation, configuration knowledge is expressed in terms
of tables (representing individual CSP variables) – see
Table 1. For example, the CSP variable type is rep-
resented by table type with the attribute val having
the CSP variable domain expressed by individual tuples
{(𝑐𝑖𝑡𝑦), (𝑙𝑖𝑚𝑜), (𝑐𝑜𝑚𝑏𝑖), (𝑥𝑑𝑟 𝑖𝑣𝑒)}. Following this type of
representation, the database (SQL) query 𝑃[𝐶=𝐶𝐹∪𝐶𝑅]𝑆 for
our car configuration task is the following (see Query 1).

1. SELECT * FROM type,fuel,skibag,4wheel,pdc
WHERE (not 4-wheel.val=yes or type.val=xdrive)

and .. and (skibag.val=yes).

In this example, we assume that S includes all variables
in 𝑉 and 𝑃 is regarded as implicit representation of the
Cartesian product 𝑡𝑦𝑝𝑒×𝑓 𝑢𝑒𝑙×𝑠𝑘𝑖𝑏𝑎𝑔×4𝑤ℎ𝑒𝑒𝑙×𝑝𝑑𝑐.1 Table
2 shows one configuration returned by Query 1. The
1We want to assure that at most one tuple is returned by a query –
to support this, we assume a query setting such as LIMIT=1 (this is
database-specific).

30

configuration includes the pdc feature, i.e., 𝑝𝑑𝑐.𝑣𝑎𝑙 = 𝑦𝑒𝑠
(this attribute has not been specified by the user).

Table 2
Configuration determined by Query 1.

table type fuel skibag 4wheel pdc
val xdrive 6l yes yes yes

Note that if we are interested only in specific attribute
values, the query projection has to specify those at-
tributes, for example, since 4wheel, fuel, type, and skibag
have already been specified as customer requirements,
only pdc needs to be included (see Query 2).

2. SELECT DISTINCT pdc.val
FROM type,fuel,skibag,4wheel,pdc
WHERE (not 4-wheel.val=yes or type.val=xdrive)

and .. and (skibag.val=yes).

Example Query Optimization. Possibilities of improv-
ing the performance of such queries are (1) to reduce
variable domains in terms of assuring node consistency
(e.g., each value of the domain of the variable type must
be consistent with each unary constraint referring to
this variable). (2) queries can be “enriched” by including
so-called no-goods (conflict sets) [6] in negated form –
the determination of possible conflicts must also be per-
formed in a pre-calculation step. (3) It is also possible to
further restrict variable (attribute) domains by establish-
ing arc consistency within a pre-calculation step.

(2) “All Possible Configurations”. Specifically for
small configuration problems with a limited configura-
tion space size there is also the possibility of just enu-
merating all possible configurations and storing those
configurations in a corresponding table (see, e.g., Table
3). Such an enumeration can be performed on the basis
of a database query 𝑃[𝐶𝐹]𝑆where 𝑃 is a table that includes
all possible configurations and 𝐶𝐹 represents the set of
domain-specific constraints.

Table 3
Explicit configuration space description in one table 𝑃 includ-
ing the CSP variables 𝑣𝑖 ∈ 𝑉 as table attributes. The correspond-
ing database query has to take into account the constraints
in 𝐶𝑅 (𝐶𝐹 is already taken into account in 𝑃).

type fuel skibag 4wheel pdc

xdrive 6l yes yes yes
xdrive 6l yes yes no

..
city 4l no no no

Following this knowledge representation, the database
query in the context of our car configuration task is the
following (see Query 3). In this example, we again as-
sume that 𝑆 includes all CSP variables. Furthermore, 𝑃

represents a table that includes all (pre-generated) possi-
ble configurations.

3. SELECT * FROM P
WHERE (4-wheel=yes) and .. and (skibag=yes).

Table 4 shows one configuration returned by Query 3.

Table 4
Configuration determined by Query 3.

type fuel skibag 4wheel pdc

xdrive 6l yes yes yes

Example Query Optimization. A basic approach to in-
crease query efficiency is to reduce the number of table
entries in 𝑃. For example, instead of having one cen-
tralized table, we could introduce one table per car type
which is reasonable if the user is sure about the car type
selection and just wants to configure the remaining pa-
rameters. If we want to generate a table just for the car
type city, this could be performed on the basis of the
query 𝑃[𝐶𝐹∪{𝑡𝑦𝑝𝑒=𝑐𝑖𝑡𝑦}]𝑆.

(3) “Local Consistency”. An alternative to the pre-
viously discussed knowledge representations is to use
tables that represent local consistency properties. For ex-
ample, the constraint 𝑐1 ∶ 4𝑤ℎ𝑒𝑒𝑙 = 𝑦𝑒𝑠 → 𝑡𝑦𝑝𝑒 = 𝑥𝑑𝑟 𝑖𝑣𝑒
can be represented by a corresponding consistency table
(variant table [7]) c1 expressing all possible combinations
of variable values of 4wheel and type as specified by the
corresponding constraint 𝑐1 (see Table 5).

Table 5
Implicit configuration space description representing locally
consistent variable value combinations (Table c1) – in this case,
combinations specified by 𝑐1 ∶ 4𝑤ℎ𝑒𝑒𝑙 = 𝑦𝑒𝑠 → 𝑡𝑦𝑝𝑒 = 𝑥𝑑𝑟 𝑖𝑣𝑒.

4wheel type

yes xdrive
no xdrive
no city
no limo
no combi

In a similar fashion, we can define a consistency table
𝑐2 expressing the possible variable value combinations
as defined by constraint 𝑐2 (see Table 6). This procedure
needs to be performed for each constraint 𝑐𝑖 ∈ 𝐶𝐹.
This way, we are able to specify tables fulfilling the

property of arc consistency since only variable values
are included which are part of at least one tuple included
in the corresponding consistency table. Following this
knowledge representation, the database query in our car
configuration task is the following (see Query 4).

4. SELECT * FROM c1, c2, ...
WHERE c1.type = c2.type AND ..

31

Table 6
Implicit configuration space description representing locally
consistent variable value combinations (Table c2) – in this case,
combinations specified by 𝑐2 ∶ 𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑦𝑒𝑠 → 𝑡𝑦𝑝𝑒 ≠ 𝑐𝑖𝑡𝑦.

skibag type

yes xdrive
yes limo
yes combi
no xdrive
no limo
no combi
no city

In this setting, we again assume that 𝑆 includes all
variables. Furthermore, 𝑃 can be regarded as the table
related to the equi-join of all generated consistency ta-
bles, i.e., 𝑐1 ⋈ 𝑐2 ⋈ 𝑐3 ⋈ 𝑐4 ⋈ 𝑐5 in our case where table
𝑐𝑖 represents the corresponding constraint 𝑐𝑖 ∈ 𝐶𝐹. In
this context, join conditions have to be integrated in the
query for every combination of consistency tables where
there is an overlap in terms of the included attributes. For
example, consistency tables 𝑐1 and 𝑐2 both include the
type attribute. Consequently, 4𝑤ℎ𝑒𝑒𝑙.𝑡𝑦𝑝𝑒 = 𝑠𝑘𝑖𝑏𝑎𝑔.𝑡𝑦𝑝𝑒
has to be included as join condition into the query. Table
7 shows the complete set of (partial) configurations re-
turned by Query 4 if we assume that only Tables 𝑐1 and
𝑐2 have been defined and included into the query.

Table 7
Partial configurations determined by Query 4.

4wheel type skibag

yes xdrive yes
yes xdrive no
no xdrive yes
no xdrive no
no city no
no limo yes
no limo no
no combi yes
no combi no

Example Query Optimization. Following the idea of k-
consistency in constraint-based reasoning [1], the number
of tuples in a consistency table can be further reduced.
For example, if the car type city is included in Table 𝑐1
but there does not exist a tuple in 𝑐2 with 𝑡𝑦𝑝𝑒 = 𝑐𝑖𝑡𝑦,
all tuples of 𝑐1 including city can be removed as well.
Formulated differently, we could check each entry of each
consistency table for the existence of a solution which
can lead to a further reduction of the number of tuples in
the existing consistency tables. Following this idea, we
are able to guarantee global consistency [1] meaning that
each consistency table only includes tuples which are part
of at least one configuration. Furthermore, as a result of
related work [8], the inclusion of negative consistency

tables and/or tables representing conflicts could make
sense to further improve database query efficiency.

4. Initial Performance Analysis
We compared the performance of the three discussed ap-
proaches for representing configuration tasks as database
query with constraint solving on the basis of five real-
world feature models [9, 10] selected from the S.P.L.O.T.
feature model repository [11]. Table 8 provides an
overview of selected feature models. Due to space com-
plexity, not all configurations could be determined for
TTax and FQAs within reasonable time limits.

For each feature model, we randomly synthesized2 and
collected 25,000 user requirements that cover 40% of the
leaf features in the feature model. We applied the system-
atic sampling technique [12] to select 10 no-solution user
requirements and 10 user requirements with at least one
solution. In Table 9, each setting shows the average run-
time of the corresponding approach after executing the
queries on the basis of these 20 user requirements. We
used Choco Solver3 and HSQLDB4 as an in-memory re-
lational database management system. All experiments
were run with an Apple M1 Pro (8 cores) with 16-GB
RAM, and an HSQLDB maximum cache size of 4GB.

Table 9 shows the results of this evaluation of selected
feature models represented as (1) an explicit enumeration
of all possible configurations, (2) an implicit representation
of the feature model configuration space (one table per
variable), (3) an implicit representation where individual
tables represent local consistency, and (4) constraint satis-
faction problem (CSP). Corresponding evaluation results
show similar runtimes for small models and significantly
longer runtimes for more complex models. Basically, the
results of our performance evaluation show the applica-
bility of database query based configuration approaches.

Table 8
Feature models used for evaluation purposes (IDE=IDE prod-
uct line, DVS=digital video system, DELL=DELL Laptops,
MTT=Model transformation taxonomy, FQAs=Functional
Quality Attributes, FM=feature model, F= features, LF=leaf
features, HC=hierarchical constraints, CC = cross-tree con-
straints, and CONFS = configurations).

FM IDE DVS DELL MTT FQAs

#F 14 26 47 88 178
#LF 9 16 38 55 124
#HC 11 25 16 54 92
#CC 2 3 105 0 9
#CONFS 80 22,680 2,319 - -

2To ensure the reproducibility of the results, we used the seed value
of 141982L for the random number generator.

3choco-solver.org
4hsqldb.org

32

Table 9
The average runtime (msec) of database query and constraint-
based configuration (FM = feature model, ALLC = all config-
urations (no optimization), OTV = one table/variable (with
node consistency), OTC = one table/constraint (with arc con-
sistency), and CSP = constraint satisfaction problem).

FM IDE DVS DELL MTT FQAs

ALLC 0.05 3.66 1.44 - -
OTV 0.49 0.45 2.53 1,448 301,541
OTC 0.51 0.78 3.32 704 220,922
CSP 0.73 0.78 1.09 1.19 2.43

5. Threats to Validity
We have shown how to apply database queries to the
identification of configurations. In a performance analy-
sis, we compared the runtimes of database queries with
the Choco constraint solver. Related results show the
basic applicability of our approach, however, further eval-
uations and optimizations are needed – specifically with
industrial datasets. Our focus in this paper is a discussion
of basic alternative knowledge representation approaches
that can be used as a basis for defining database queries.
We are aware of related work focusing on compression as-
pects when supporting configuration with variant tables
– see, for example, Haag [7]. A major issue for our future
work will be to understand the possibilities of knowledge
compression depending on the used knowledge repre-
sentation. Finally, integrating machine learning with
constraint solving is a relevant topic [13] – a major goal
for future work is to analyze related application poten-
tials in the context of database queries [14].

6. Conclusions and Future Work
We have introduced a database query based approach to
constraint-based configuration. With this, we provide
an alternative to approaches such as SAT solving and
constraint solving. For sure, further evaluations need to
be performed and the proposed queries have to be further
optimized for more complex industrial scenarios.

Open issues for future related work are the following:
(1) further evaluations on the basis of industrial configu-
ration benchmarks, (2) comparison with other knowledge
representation and reasoning approaches such as answer
set programming (ASP) and SAT solving, (3) performance
improvements through parallelization approaches (e.g.,
[15]), (4) understanding in more detail how constraint-
based reasoning and database queries can profit from
each other, for example, in which way could forward
checking be applied in database queries and in which
way can techniques from relational databases be useful
in the context of SAT and constraint solving, and (5) we
are interested in which way machine learning and knowl-

edge compression can be used and combined to increase
database query efficiency.

References
[1] F. Rossi, P. van Beek, T. Walsh, Handbook of Con-

straint Programming, Elsevier, 2006.
[2] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen,

Knowledge-based Configuration - From Research
to Business Cases, Elsevier, 2014.

[3] U. Junker, Configuration, in: F. Rossi, P. van Beek,
T. Walsh (Eds.), Handbook of Constraint Program-
ming, Elsevier, 2006, pp. 837–873.

[4] J. Gu, P. W. Purdom, J. Franco, B. W. Wah, Al-
gorithms for the Satisfiability (SAT) Problem: A
Survey, in: DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, American
Mathematical Society, 1996, pp. 19–152.

[5] V. Myllärniemi, J. Tiihonen, M. Raatikainen,
A. Felfernig, Using Answer Set Programming for
Feature Model Representation and Configuration,
in: ConfWS’14, Novi Sad, Serbia, 2014, pp. 1–8.

[6] U. Junker, QuickXPlain: Preferred Explanations
and Relaxations for Over-constrained Problems, in:
AAAI 2004, 2004, pp. 167–172.

[7] A. Haag, Managing Variants of a Personalized Prod-
uct, JIIS 49 (2017) 59–86.

[8] A. Haag, Arc Consistency with Negative Variant
Tables, in: ConfWS’15, Vienna, Austria, 1015, pp.
81–87.

[9] D. Benavides, S. Segura, A. Ruiz-Cortes, Automated
Analysis of Feature Models 20 Years Later: A Liter-
ature Review, Inf. Sys. 35 (2010) 615–636.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson,
Feature-oriented Domain Analysis (FODA) – Feasi-
bility Study, Technical Report SEI-90-TR-21 (1990).

[11] M. Mendonca, M. Branco, D. Cowan, S.P.L.O.T.:
Software Product Lines Online Tools, in: OOPSLA
’09, ACM, New York, NY, USA, 2009, pp. 761–762.

[12] S. A. Mostafa, I. A. Ahmad, Recent Developments
in Systematic Sampling: A Review, Journal of Sta-
tistical Theory and Practice 12 (2018) 290–310.

[13] A. Popescu, S. Polat-Erdeniz, A. Felfernig, M. Uta,
M. Atas, V. Le, K. Pilsl, M. Enzelsberger, T. Tran,
An Overview of Machine Learning Techniques in
Constraint Solving, JIIS 58 (2022) 91–118.

[14] R. Guo, K. Daudjee, Research Challenges in Deep
Reinforcement Learning-Based Join Query Opti-
mization, in: aiDM’20, ACM, New York, USA, 2020.

[15] V. Le and C. Vidal Silva and A. Felfernig and D. Be-
navides and J. Galindo and T.N.T. Tran, FastDiagP:
An Algorithm for Parallelized Direct Diagnosis, in:
AAAI-23, 2023, pp. 6442–6449.

33

Game-based Configuration Task Learning with ConGuess:
An Initial Empirical Analysis
Andreas Hofbauer1,*, Alexander Felfernig1

1Graz University of Technology, Inffeldgasse 16b, Graz, 8010, Austria

Abstract
The concepts and semantics of constraint solving and configuration need to be understood in order to be able to develop
one’s own configuration knowledge bases. Developing a related basic understanding is in many cases quite challenging.
Consequently, further support is needed that makes the learning of configuration knowledge representation practices and
semantics less effortful. In this paper, we provide a short overview of ConGuess which is a game-based learning environment
for constraint-based configuration tasks. In this context, we report the results of a user study which focused on an analysis of
the perceived complexity of different constraint types and on a corresponding usability analysis.

Keywords
Knowledge-based Configuration, Constraint Solving, E-Learning, Gamification

1. Introduction
Assuring the correct understanding of configuration
knowledge representations and corresponding semantics
is an important issue specifically in industrial configu-
ration settings. Such an understanding can be regarded
as a precondition for successful configurator develop-
ment and maintenance [1, 2, 3]. Following the basic idea
of gamification-based learning [4], we have developed
ConGuess [5] which is an application supporting the
learning of the semantics of constraint satisfaction prob-
lems (CSP) [6] in a gamification-based fashion.

The overall idea of ConGuess is to pre-generate con-
figuration tasks (represented as CSPs) and let users (game
players) try to figure out correct solutions for the defined
tasks. With this, ConGuess follows the idea of earlier
related work focusing on the learning of graphical con-
figuration constraints (specifically, incompatibility con-
straints) and the concepts of hitting sets in model-based
diagnosis (specifically, minimal food item sets that cover
all relevant vitamins) [7, 8, 9].

Also in this line of research, Jefferson et al. [10] present
the application Combination which supports the learn-
ing of configuring color ray emitting wooden pieces such
that no color array hits a wooden piece of different color.
Compared to related work, ConGuess extends the ex-
pressivity of constraint representations and also includes

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
*Corresponding author.
$ andreas.hofbauer@student.tugraz.at (A. Hofbauer);
alexander.felfernig@ist.tugraz.at (A. Felfernig)
� https://felfernig.ist.tugraz.at/ (A. Felfernig)
� 0000-0003-2956-3862 (A. Hofbauer); 0000-0003-0108-3146
(A. Felfernig)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

a gamification-based approach that can help to increase
user engagement.

The contributions of this paper are the following: (1)
we provide a short introduction to the ConGuess gaming
app, (2) we report the results of an initial complexity and
usability analysis that has been conducted in an Artificial
Intelligence university course, and (3) we discuss different
open issues for further related research.

The remainder of this paper is organized as follows. In
Section 2, we provide a short overview of the ConGuess
app specifically introducing the major idea behind. There-
after, in Section 3, we discuss first insights regarding the
perceived complexity of different constraint types. In
Section 4, we report results regarding the usability of
ConGuess. In Section 5, we discuss potential threats
to validity. The paper is concluded with a discussion of
open research issues in Section 6.

2. The ConGuess Game
In the line of related research (e.g., [7]), ConGuess is pro-
vided as Android app1 which includes mechanisms for
automated CSP generation and evaluation of solutions.2

In ConGuess, players have to solve pre-generated CSPs
[6] which are represented in terms of a set of Variables 𝑉
with related domain definitions and a corresponding set
of constraints (𝐶). The task of players is to identify solu-
tions (configurations) that satisfy all given constraints.

ConGuess supports different game levels where with
an increasing level the corresponding CSPs become more
difficult to solve. For solving configuration tasks (CSPs),
players (users) have a pre-defined time limit. For each cor-
rectly solved CSP, players receive corresponding points

1See play.google.com.
2We apply the constraint solving library Choco (choco-solver.org).

34

(a) A simple configura-
tion task (CSP).

(b) A more complex
configuration task.

Figure 1: ConGuess: configuration task user interface.

which increases their overall game score. If a player pro-
poses a configuration inconsistent with the given set of
constraints, his/her score is not reduced and further tries
are possible. With an increasing number of unsuccessful
tries, the number of points that can be received for a cor-
rect solution gets decreased. Finally, the game provides a
global highscore ranking which helps to further motivate
users to improve their personal highscore.

A screenshot of ConGuess in action is provided in
Figure 1 which depicts two different configuration tasks
(a more simple one on the left hand side and a more
complex one on the right hand side). The value of each
corresponding variable has to be specified individually
indicated by the select button. A major objective of the
app is to make the configuration task representation as
understandable as possible. For this reason, the overall
rule of the app in terms of information visualization is
that each configuration task fits into the screen without
the need of scrolling.

As mentioned, constraint satisfaction problems (CSPs)
in ConGuess are pre-generated. The consistency of in-
dividual configuration tasks (CSPs) is checked with the
Choco constraint solver. If a generated configuration
task (variables and corresponding constraints) is consis-
tent, the corresponding setting is stored for further usage
(as configuration task given to players). Player-proposed
solutions as well as generated configuration tasks are
checked for consistency using Choco.3

3Details on the ConGuess constraint solving and configuration task
generation approach can be found in Hofbauer and Felfernig [5].

3. Complexity of Constraint Types
Our goal was to better understand in which way differ-
ent types of constraints are understood by players. In
order to achieve this goal, we performed a user study
with 150 bachelor students engaged in an Artificial In-
telligence course at the Graz University of Technology.
Best-performing students had the chance to achieve ad-
ditional bonus points considered then as a part of the
overall evaluation. In total, 780 game sessions have been
completed within the scope of the user study resulting
in an average number of 5.2 gaming sessions per study
participant (with an average of 6 levels per session).

In each ConGuess session, correct and wrong guesses
were tracked in combination with the corresponding con-
figuration task shown to the player. The error rate𝑅𝑒𝑟𝑟𝑜𝑟

of specific configuration tasks (CSPs) was tracked follow-
ing the metric shown in Formula 1. In this context, 𝑛𝑡𝑜𝑡𝑎𝑙

is the total amount of guesses and 𝑛𝑒𝑟𝑟𝑜𝑟 is the amount
of wrong guesses for a CSP.

𝑅𝑒𝑟𝑟𝑜𝑟 =
𝑛𝑒𝑟𝑟𝑜𝑟

𝑛𝑡𝑜𝑡𝑎𝑙
(1)

Within the scope of our study, we compared different
configuration task types with regard to their understand-
ability: configuration tasks (1) consisting of equality and
inequality constraints, (2) consisting of constraints in-
cluding a range restriction, i.e., <,>,≤,≥, (3) with impli-
cations (requires) and equivalences, and (4) with different
numbers of constraints and variables.

In a first step, we focused on the analysis of single-
constraint configuration tasks, i.e., configuration tasks
with only one constraint included (|𝐶| = 1). Tables
1–5 include example constraints which represent a cor-

35

responding analysis class, for example, the constraint
𝑋1 = 𝑋2 in Table 1 represents a configuration task
with a singleton constraint of type equality constraint.
Similarly, the first constraint in Table 2 represents a con-
figuration task with a single constraint of type <.

Equality and Inequality Constraints. First, we have
analyzed player failure rates when being confronted with
singleton equality and inequality constraints. The corre-
sponding 𝑅𝑒𝑟𝑟𝑜𝑟 rates are depicted in Table 1. As can be
immediately seen, the error rates for such constraints are
rather low (on an average, below 5%) indicating a high
degree of understandability in the reported basic setting.

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

X1 = X2 4.08
X3 != X2 2.11

Table 1
Error rates of binary (in-)equality constraints.

Range Restriction Constraints. In the next step, we
analyzed the understandability of range restriction con-
straints (<, >, ≤, ≥) (see Table 2). Compared to settings
including the < and > operators, error rates significantly
increase with settings including≤ and≥ operators. One
way to explain this significant difference is the increased
complexity of {≤,≥} due to the fact that both dimen-
sions, inequality and equality have to be taken into ac-
count at the same time.

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

X3 < X4 8.41
X1 > X2 4.90
(X2 + 1) > X3 7.37
X3 ≤ X2 20.49
X2 ≥ X1 13.50

Table 2
Error rates of binary range restriction constraints.

Requires and Equivalence Constraints. In this con-
text, we have compared the understandability of individ-
ual implications (requires) and equivalences (see Table
3). We can see that equivalence constraints have slightly
lower error-rates than requires constraints. This is a re-
sult that has also been confirmed by a previous study of
Felfernig et al [3]. One way to explain this difference is
a potentially higher overhead induced by the analysis
of implications since equivalences can be reduced to set-
tings where both sides of the logical operator must have
the same logical value. Further related work on model
understandability can be found in Sepasi et al. [11] where
cognitive complexity is also measured on the basis of eye
tracking technologies.

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

(X2 = X4) ↔ (X1 < X3) 8.05
(X1 > X3) ↔ (X1 < X2) 17.39
(X3 != X2) → (X4 != X2) 18.06
(X1 > X3) → (X1 < X2) 20.53

Table 3
Error rates of requires and equivalence constraints.

Number of Constraints. When using {→,←} in-
stead of↔ for expressing equivalence knowledge, we
need twice the amount of constraints. As could be ob-
served in our analysis, an increasing number of con-
straints leads to increasing error rates due to a lower
understandability of the configuration task (see Table 4).

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

c1: X1 > X2
4.90

c2: X2 = X3
c1: X1 ≥ X2

17.12c2: X1 > X4
c2: X3 > X2
c1: X1 != X3

36.87
c2: X2 > X3
c3: X4 ≤ X1
c4: X3 < X4

Table 4
Error rates with an increasing number of constraints.

N-ary Constraints. The highest error-rates in our
study were encountered with constraints involving more
than 2 variables. As we can see in Table 5, even config-
uration tasks with |𝐶| = 1 are already difficult to solve
for players, if the number of included variables is greater
than 2. Furthermore, by increasing the number of con-
straints in a configuration task, it becomes extremely
challenging for players to find a consistent solution.

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

c1: X3 ≤ (X1 + 3) = (X2 - 2) 20.13
c1: X3 ≤ (X4 + 4)

72.12
c2: X4 < X1 ≤ X3
c1: X3 ≥ X1 ≤ X2

73.02c2: (X1 · 2) > X2
c3: X3 < X2
c1: X4 != (X3 + 3) < X1

84.68
c2: (X4 - 2) ≥ X1
c3: X1 < (X3 · 3)
c4: X4 != (X1 + 3)

Table 5
Error rates with n-ary constraints.

36

4. Usability of ConGuess
To evaluate the usability of ConGuess, we have per-
formed a usability study with 10 participants (computer
science students on the bachelor level). For this purpose,
we have used the System Usability Scale (SUS) [12].
SUS is a widely used tool for evaluating the usability
of systems and software applications and it consists of
a questionnaire with 10 items. After using ConGuess
(without further explanations), the participants had to
rate their perception of the software on a 5-point Likert
scale. Following the SUS calculation scheme resulted in
an overall evaluation of 89.5 out of 100 which is an ex-
cellent SUS rating expressing clear understandability and
high willingness to use the system.

5. Threats to Validity
The results reported in this paper are based on the app
usage by bachelor-level students within an Artificial In-
telligence course. On the one hand, different educational
backgrounds could be expected by persons working in
industrial configurator projects. On the other hand, per-
sons in an early phase of their career could be in a similar
situation as students engaged in our study.

The settings analyzed in our study are limited in the
sense that further aspects such as constraint grouping,
i.e., constraint ordering, have not been analyzed in detail.
Furthermore, we did not compare alternative ways of
increasing the complexity level of individual configura-
tion tasks which is important since our goal is to create
a kind a flow where game players try to solve even more
configuration tasks. We regard these aspects as major
issues for future work.

6. Conclusion and Future Work
In this paper, we have presented ConGuess which is an
Android app supporting the learning of configuration
knowledge representations and underlying semantics.
The basic idea of ConGuess is that players learn con-
straint semantics on the basis of trying to solve CSPs. We
conducted an empirical study to better understand the
cognitive complexity of different constraint structures.

Major issues for future work are the following: (1)
we will analyze to which extent the grouping of con-
straints and corresponding variables can have an impact
on the overall understandability of a configuration task,
(2) based on the insights of our empirical study, we will
propose adaption operations on real-world configuration
knowledge bases and analyze related impacts on under-
standability (again, within the scope of empirical stud-
ies), (3) based on the results of further empirical studies,

we will try to adapt the complexity measures currently
integrated into the ConGuess configuration task gener-
ation. Improved complexity measures could result in a
more user-centered increase of configuration task com-
plexity and with this potentially also to a corresponding
improved learning experience.

References
[1] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen,

Knowledge-based Configuration - From Research
to Business Cases, Elsevier, 2014.

[2] A. Felfernig, S. Reiterer, M. Stettinger, J. Tiihonen,
Towards understanding cognitive aspects of config-
uration knowledge formalization, in: Vamos’2015,
ACM, New York, NY, USA, 2015, p. 117–123.

[3] A. Felfernig, M. Mandl, A. Pum, M. Schubert, Em-
pirical knowledge engineering: Cognitive aspects
in the development of constraint-based recom-
menders, in: Trends in Applied Intelligent Systems,
volume 6096 of LNCS, Springer, Berlin / Heidelberg,
2010, pp. 631–640.

[4] R. Raymer, Gamification: Using game mechanics
to enhance elearning, ELearn 2011 (2011).

[5] A. Hofbauer, A. Felfernig, ConGuess: A Learning
Environment for Configuration Tasks, in: ACM
SPLC’22, Association for Computing Machinery,
New York, NY, USA, 2022, p. 156–157.

[6] F. Rossi, P. van Beek, T. Walsh, Handbook of Con-
straint Programming, Elsevier, Amsterdam, The
Netherlands, 2006.

[7] A. Felfernig, M. Jeran, T. Ruprechter, A. Ziller, S. Re-
iterer, M. Stettinger, Learning games for configu-
ration and diagnosis tasks, in: 17th International
Configuration Workshop, volume 1453, CEUR, Vi-
enna, Austria, 2015, pp. 111–114.

[8] A. Felfernig, M. Schubert, C. Zehentner, An efficient
diagnosis algorithm for inconsistent constraint sets,
AIEDAM 26 (2012) 53–62.

[9] R. Reiter, A theory of diagnosis from first principles,
Artificial Intelligence 32 (1987) 57–95.

[10] C. Jefferson, W. Moncur, K. Petrie, Combination:
Automated generation of puzzles with constraints,
in: ACM Symposium on Applied Computing, ACM,
New York, NY, USA, 2011, pp. 907–912.

[11] E. Sepasi, K. Balouchi, J. Mercier, R. Lopez-Herrejon,
Towards a cognitive model of feature model com-
prehension: An exploratory study using eye-
tracking, in: ACM SPLC’22, Association for
Computing Machinery, New York, NY, USA, 2022,
p. 21–31. URL: https://doi.org/10.1145/3546932.
3546995. doi:10.1145/3546932.3546995.

[12] J. Brooke, SUS: A quick and dirty usability scale,
Usability Eval. Ind. 189 (1995).

37

Collaborative Recommendation of Search Heuristics For
Constraint Solvers⋆

Damian Garber1,∗, Tamim Burgstaller1, Alexander Felfernig1, Viet-Man Le1, Sebastian Lubos1,
Trang Tran1 and Seda Polat-Erdeniz1

1Graz University of Technology, Inffeldgasse 16b, Graz, 8010, Austria

Abstract
Feature models (FM) support the management of variability properties of software, products, and services. To enable feature
model configuration, these models have to be translated into a corresponding formal representation (e.g., a satisfiability or
constraint satisfaction representation). Specifically in interactive configuration, efficient response times are crucial. In this
paper, we show how to improve the performance of constraint solvers (supporting FM configuration) on the basis of exploiting
the concepts of collaborative filtering for recommending solver search heuristics (variable orderings and value orderings).
As a basis for our recommendation approach, we used data (configurations) synthesized from real-world feature models
using different state-of-the-art synthesis approaches. A performance analysis shows that, with heuristics recommendation,
significant improvements of solver runtime performance compared to standard solver heuristics can be achieved.

Keywords
Feature models, configuration, constraint solving, search heuristics, performance optimization, collaborative filtering

1. Introduction
Feature models (FMs) are in wide-spread use for model-
ing variability properties [1, 2]. These properties can be
translated into a formal representation [3] to support var-
ious types of reasoning tasks, for example, in the context
of feature model analysis and feature model configura-
tion. In this paper, we focus on the aspect of feature
model configuration where users of a configuration sys-
tem define their preferences (e.g., in terms of intended
feature inclusions) and the feature model configurator
then tries to find a corresponding complete configuration
which defines inclusion or exclusion for each feature.

Feature model configuration needs to be efficient
which can become challenging specifically with large
and complex configuration knowledge bases. The major
means of improving the performance of solvers (specifi-
cally SAT and constraint solvers) is to employ different
search heuristics which can help to cut down the search
space as fast as possible. Following the idea of integrating
machine learning (ML) with constraint solving [4], we
propose to apply recommender systems [5], more specif-
ically, collaborative filtering [6], to recommend solver

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
∗Corresponding author.
Envelope-Open dgarber@ist.tugraz.at (D. Garber);
tamim.burgstaller@ist.tugraz.at (T. Burgstaller);
alexander.felfernig@ist.tugraz.at (A. Felfernig);
vietman.le@ist.tugraz.at (V. Le); slubos@ist.tugraz.at (S. Lubos);
ttrang@ist.tugraz.at (T. Tran); spolater@ist.tugraz.at
(S. Polat-Erdeniz)
Orcid 0009-0005-0993-0911 (D. Garber)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

search heuristics for a new FM configuration task.
A major precondition for implementing such a ma-

chine learning approach is the availability of training
data that help to identify relevant heuristics. An issue in
this context is the availability of datasets – this cannot be
guaranteed specifically at the very beginningwhen an FM
configurator has not been used that often. An alternative
to datasets collected from real-world user interactions is
data synthesis [7, 8]. In this paper, we focus on develop-
ing and comparing different configuration data synthesis
strategies (see, e.g., Pereira et al. [8]) to gain deeper in-
sights regarding the impact of the used strategies on the
quality of the heuristics determined by our collaborative
filtering approach. As discussed in Pereira et al. [8] (the
focus of their work is performance prediction, for exam-
ple, in video encoding scenarios), performance prediction
is feasible, however, synthesizing high-quality and small
sample data is a challenging task (see also [9]).
There exist a couple of approaches to integrate ma-

chine learning with constraint solving focusing on the
aspect of identifying relevant heuristics on the basis of
given datasets – see, for example, Erdeniz et al. [10] and
Uta et al. [11]. These approaches focus on predicting
relevant attribute values (features) for a user and – at the
same time - improving constraint solver performance by
choosing appropriate variable value ordering heuristics. In
contrast to related work, we extend the recommendation
scope by also supporting the identification of efficient
variable orderings. At the same time, we analyze the im-
pact of different data synthesis strategies on the quality
of the recommended heuristics (which we regard as a
new contribution to the fields of feature modeling and
knowledge-based configuration).

38

Figure 1: Example feature model of a survey software (based on Le et al. [12]).

The major contributions of this paper are the follow-
ing. (1) we show how to apply configuration space learn-
ing concepts in FM configurator performance optimiza-
tion. (2) our recommendation approach takes into ac-
count both, the recommendation of variable orderings
and variable value orderings. (3) we compare different
data synthesis strategies with regard to their applicability
in search heuristics selection. (4) our evaluation results
on the basis of real-world configuration (feature) models
[13, 14] indicate significant performance improvements.
The remainder of this paper is organized as follows.

In Section 2, we provide an example feature model with
the related constraint-based representation. In Section 3,
we introduce an approach to collaborative filtering based
recommendation of constraint solver search heuristics.
In Section 4, we provide an overview of the synthesis
approaches we have used in our recommendation set-
tings. Performance evaluation results are summarized
in Section 5. Threats to validity are discussed in Section
6. The paper is concluded with a discussion of future
research issues in Section 7.

2. Example Configuration Task
In the following, we introduce an example feature model
representing the variability properties of a survey soft-
ware (see Figure 1). Each configured survey software
must have included a corresponding license model (which
can be either advanced or basic). The features statistics
and ABtesting are optional ones, i.e., must not be part of
every configuration. Finally, each survey software con-
figuration must include a selected interaction mode (in
terms of the type of questions (feature QA) supported)
which consists of at least one out of question answering
(feature basicQA) and multimedia based question answer-
ing (feature multimediaQA).
The feature model in Figure 1 includes different re-

lationships and cross-tree constraints 𝑐𝑖 ∈ 𝐶. First,

each survey software configuration must include the
root feature (𝑐1 ∶ 𝑠𝑢𝑟𝑣𝑒𝑦 = 𝑡𝑟𝑢𝑒) and either an ad-
vanced or basic license (𝑐2 ∶ 𝑠𝑢𝑟𝑣𝑒𝑦 ↔ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 and
𝑐3 ∶ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ↔ 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 ○∨ 𝑏𝑎𝑠𝑖𝑐).1 Furthermore, ABtest-
ing and statistics are optional (𝑐4 ∶ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 → 𝑠𝑢𝑟𝑣𝑒𝑦
and 𝑐5 ∶ 𝑠𝑡𝑎𝑡𝑖𝑠𝑡 𝑖𝑐𝑠 → 𝑠𝑢𝑟𝑣𝑒𝑦). Each selected ques-
tion mode must include at least one out of basic and
multimedia (𝑐6 ∶ 𝑄𝐴 ↔ 𝑠𝑢𝑟𝑣𝑒𝑦 and 𝑐7 ∶ 𝑄𝐴 ↔
𝑏𝑎𝑠𝑖𝑐𝑄𝐴 ∨ 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴). Finally, the FM includes a set
of cross-tree constraints: basic licenses are incompat-
ible with ABtesting (𝑐8 ∶ ¬(𝑏𝑎𝑠𝑖𝑐 ∧ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔)), the in-
clusion of ABtesting requires the inclusion of statistics
(𝑐9 ∶ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 → 𝑠𝑡𝑎𝑡𝑖𝑠𝑡 𝑖𝑐𝑠), and a basic license must
not be combined with a multimedia answering mode
(𝑐10 ∶ ¬(𝑏𝑎𝑠𝑖𝑐 ∧ 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴)).

Summarizing, our example feature model includes the
list of (Boolean-valued) features (variables 𝑣𝑖) 𝐹 = {𝑣1 ∶
𝑠𝑢𝑟𝑣𝑒𝑦 , 𝑣2 ∶ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒, 𝑣3 ∶ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔, 𝑣4 ∶ 𝑠𝑡𝑎𝑡𝑖𝑠𝑡 𝑖𝑐𝑠, 𝑣5 ∶
𝑄𝐴, 𝑣6 ∶ 𝑏𝑎𝑠𝑖𝑐, 𝑣7 ∶ 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑, 𝑣8 ∶ 𝑏𝑎𝑠𝑖𝑐𝑄𝐴, 𝑣9 ∶
𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴}. Furthermore, the model includes the set
of constraints 𝐶 = {𝑐1..𝑐10}. These are the two major ele-
ments of an FM configuration task defined in terms of a
constraint satisfaction problem (CSP) (see Definition 1).

Definition 1 (FM Configuration Task). An FM con-
figuration task (𝑉 , 𝐶, 𝑅) can be defined as a CSP, where V
is a set of (Boolean-valued) variables 𝑉 = {𝑣1, ..., 𝑣𝑛} and
𝐶 = {𝑐1..𝑐𝑚} is a set of feature model constraints. Finally,
𝑅 = {𝑟1..𝑟𝑘} is a set of user requirements also represented
in terms of constraints (mostly variable assignments).

With a configuration task definition2, we can introduce
the concept of an FM configuration (Definition 2).

Definition 2 (FM Configuration). An FM configura-
tion for an FM configuration task (𝑉 , 𝐶, 𝑅) is an assign-
1○∨ denotes a logical xor.
2Without loss of generality, we focus on feature models and corre-
sponding Boolean variable domains.

39

Table 1
Solver search heuristics for solving a new configuration task (𝑡𝑎𝑠𝑘) can be determined by reusing the search heuristics already
applied to create the nearest neighbor (𝑁𝑁) configuration(s) (𝑖𝑑 = configuration identifier). In this example, the selected nearest
neighbor is configuration 3 – the corresponding search heuristics can be applied to solve the new FM configuration task. In
this context, H=highest value first and L=lowest value first.

Configuration Variable Ordering Value Ordering Runtime [ms]
id 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

𝑐𝑜𝑛𝑓1 1 1 0 1 1 1 0 1 0 9 3 6 1 8 4 7 5 2 L L H L L H H H L 229.133
𝑐𝑜𝑛𝑓2 1 1 0 1 1 1 0 1 0 5 2 3 9 7 1 8 6 4 H L L L L H L L H 218.384
𝑐𝑜𝑛𝑓3 1 1 0 1 1 0 1 1 0 4 2 7 5 8 6 1 3 9 H H H H L H L L L 191.296
𝑐𝑜𝑛𝑓4 1 1 0 0 1 0 1 1 0 8 2 7 9 6 5 4 1 3 H L H H L H L L H 116.995

𝑡𝑎𝑠𝑘 ? 1 ? 1 ? ? ? ? ? ? → 4 2 7 5 8 6 1 3 9 ? → H H H H L H L L L ?

ment 𝑐𝑜𝑛𝑓 = {𝑣1 = 𝑣𝑎1 ∧ .. ∧ 𝑣𝑛 = 𝑣𝑎𝑛} where 𝑐𝑜𝑛𝑓 ∪ 𝐶 ∪ 𝑅
is consistent and every variable in 𝑉 has an assignment,
i.e., we assume assignment completeness.

Assuming a set of defined user requirements 𝑅 =
{𝑟1 ∶ 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 = 𝑡𝑟𝑢𝑒, 𝑟2 ∶ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑟3 ∶
𝑏𝑎𝑠𝑖𝑐𝑄𝐴 = 𝑡𝑟𝑢𝑒} (i.e., users do not need to define
their preferences with regard to all features) could re-
sult in the following complete configuration 𝑐𝑜𝑛𝑓 =
{𝑠𝑢𝑟𝑣𝑒𝑦 = 𝑡𝑟𝑢𝑒, 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 = 𝑡𝑟𝑢𝑒, 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 = 𝑡𝑟𝑢𝑒, 𝑏𝑎𝑠𝑖𝑐 =
𝑓 𝑎𝑙𝑠𝑒, 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑠𝑡𝑎𝑡𝑖𝑠𝑡 𝑖𝑐𝑠 = 𝑡𝑟𝑢𝑒, 𝑄𝐴 =
𝑡𝑟𝑢𝑒, 𝑏𝑎𝑠𝑖𝑐𝑄𝐴 = 𝑡𝑟𝑢𝑒, 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴 = 𝑓 𝑎𝑙𝑠𝑒}.
Having introduced the concepts of a configuration

task and a corresponding configuration, we are now able
to discuss our collaborative filtering based constraint
solver search heuristics recommendation approach in
more detail.

3. Collaborative Search Heuristics
Recommendation

Our basic idea is to apply different types of nearest neigh-
bor based collaborative filtering [6] for the purpose of rec-
ommending relevant solver search heuristics (including
both, variable orderings (the order in which the solvers
tries to instantiate variables) and variable value orderings
also denoted as variable domain strategies (the order in
which the solver instantiates variable values) for a new
configuration task (see Definition 1).
Our used variable value orderings (i.e., variable do-

main strategies) are highest first (H) and lowest first (L),
i.e., the constraint solver starts with trying to instanti-
ating the highest or the lowest variable value first.3 For
the purposes of our experiments, we use different data
synthesis approaches [9] (see Section 4). Each entry of a
synthesized dataset represents a complete configuration
consistent with the constraints in 𝐶 and 𝑅 (see Definition
2). In addition to the feature settings (inclusion or exclu-
sion), each entry also includes information about (1) the
used variable ordering, (2) variable value ordering, and

3In our example, strategy 𝐻 first tries to include feature 𝑣𝑖, i.e., 𝑣𝑖 =
𝑡𝑟𝑢𝑒.

(3) runtime (in 𝑚𝑠) to find the corresponding configura-
tion (see Table 1). We use such entries to identify (reuse)
search heuristics for completing new configuration tasks.

k-nearest neighbors (k=1). Table 1 shows a simpli-
fied example of how to apply 𝑘𝑁𝑁 (𝑘 nearest neighbor)
based approaches for recommending search heuristics
for a new configuration task (in this example, we assume
𝑘 = 1). The table contains four (in our case synthesized)
entries of complete configurations including further in-
formation on the used solver search heuristics, i.e, vari-
able and variable value orderings. Finally, for each con-
figuration we have information about the corresponding
solver runtime (in 𝑚𝑠).
In this example, the new configuration task needs to

be solved. The idea is to identify nearest neighbor con-
figurations 𝑐𝑜𝑛𝑓𝑖 on the basis of the similarity between
the new configuration task and the available (complete)
configuration entries (𝑐𝑜𝑛𝑓1 – 𝑐𝑜𝑛𝑓4 in Table 1). Follow-
ing Formula 1 for determining the similarity between the
new configuration task and each 𝑐𝑜𝑛𝑓𝑖, configurations
𝑐𝑜𝑛𝑓1–𝑐𝑜𝑛𝑓3 have the same similarity, i.e., 𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓1)
= 𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓2) = 𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓3) = 1.0.4 In this con-
text, 𝑉 ′ denotes variables with associated specified user
requirements, i.e., those variables of 𝑉 which have a cor-
responding initial value assignment in the configuration
task definition (e.g., {𝑣2, 𝑣4} in Table 1).

𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓) =
|{𝑣𝑖 ∈ 𝑉 ′ ∶ 𝑣𝑎𝑙(𝑣𝑖, 𝑡𝑎𝑠𝑘) = 𝑣𝑎𝑙(𝑣𝑖, 𝑐𝑜𝑛𝑓)}|

|{𝑣𝑖 ∈ 𝑉 }|
(1)

In this context, task (the initial user requirements) rep-
resents a partial configuration, since not every variable
needs to have an assigned value – assigned values are
assumed to represent user requirements 𝑟𝑖 ∈ 𝑅.

k-nearest neighbors (k>1). The k-nearest neighbor
based approach identifies the 𝑘 most similar configura-
tions 𝑐𝑜𝑛𝑓𝑖 compared to the current configuration 𝑡𝑎𝑠𝑘
(see Formula 1) and then chooses the configuration with

4𝑣𝑎𝑙(𝑣𝑖,) denotes the value of variable 𝑣𝑖.

40

the best solver runtime performance (which is then the
so-called nearest neighbor). Since 𝑐𝑜𝑛𝑓3 has the lowest
(best) runtime among the identified nearest neighbors, we
can reuse the solver search heuristics used to determine
𝑐𝑜𝑛𝑓3. If 𝑘 = 1, only one nearest neighbor is identified and
the corresponding solver search heuristics are applied
to the current configuration task. The major difference
between 𝑘 = 1 and 𝑘 > 1 is that in 𝑘 > 1 settings it could
be the case that a configuration with lower similarity
(see Formula 1) is selected due to a better corresponding
runtime performance.

k-nearest neighbors (k>1, weighted). The previ-
ously discussed k-nearest neighbor approach takes into
account the similarity between the current configura-
tion (task) and already existing configurations 𝑐𝑜𝑛𝑓𝑖. In
our experiments, we were also interested in the impact
of taking into account tradeoffs between configuration
similarity and solver runtimes (see Formula 2).

𝑠𝑖𝑚𝑡(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓) =
𝑚𝑎𝑥(𝑟𝑢𝑛𝑡𝑖𝑚𝑒) − 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑐𝑜𝑛𝑓)

1 − 𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓) + 𝜆
(2)

Similar to the k-nearest neighbor based approach (𝑘 >
1), this weighted approach (see Formula 2) as well identi-
fies configurations similar to the current configuration
(task), but then uses similarity as a weighting factor, i.e.,
not just selects the nearest neighbor with the best run-
time performance. This way, we determine those nearest
neighbors with a good runtime which are at the same as
similar as possible to the given configuration task.
In Formula 2, we have introduced a small constant 𝜆

to avoid division by 0 which could happen in situations
where the requirements in the given configuration task
are equivalent with the corresponding variable settings
in 𝑐𝑜𝑛𝑓, i.e., the similarity is 1.0. Finally, we want to
mention that max(runtime) denotes the highest (global)
runtime value used to represent the worst (highest) run-
time observed in the (FM-specific) synthesized data.

4. Used Data Synthesis
Approaches

Overall Synthesis Approach. Themethods we chose
for synthesizing configuration data are based on those dis-
cussed in Pereira et al. [9]. We have applied these synthe-
sis approaches in our constraint solver search heuristics
recommendation scenario for the purpose of generating
complete and consistent configurations, i.e., each vari-
able has a corresponding assignment and all assignments
are consistent with the constraints in 𝐶. As solver input,
we have generated a set of user requirements 𝑟𝑖 ∈ 𝑅 rep-
resenting around 10% of the features contained in the

corresponding feature model. For each variable, a cor-
responding variable value ordering heuristics has been
chosen randomly. Finally, we also chose a variable or-
dering for variables not contained in the generated set
of user requirements 𝑅. On the basis of this initial input
(randomly generated search heuristics and user require-
ments), a solver has been activated with a repetition
factor of 5 to determine the average runtime needed to
solve the defined setting (see also Tables 2 and 3). Fol-
lowing the overview of Pereira et al. [9], we have used
and evaluated the following data synthesis approaches.

Random Sampling. Random Sampling is one of the
most widely used methods to synthesize data for configu-
ration problems [15, 16, 17]. There are several variations
[9, 13] that can be differentiated with regard to the num-
ber generated samples. One of these variations generates
a fixed (pre-defined) number of configurations, regardless
of the properties of the underlying feature model. The
fixed number approaches we have tested in the context
of our evaluation are: 100, 200, 500, 1000, 2000 and 10000.
In addition to this rather static approach, we have

applied other approaches which take into account feature
model sizes. Random N focuses on generating 𝑁 random
configurations where 𝑁 equals the number of features in
the feature model. There also exist some variations of this
approach where the number of generated configurations
equals 2𝑁 (Random 2𝑁) or 3𝑁 (Random 3𝑁). Furthermore,
the number of configurations can also be systematically
reduced by introducing the synthesis variants Random
1
4N, Random

1
2N and Random 3

4N.

Heuristics Based Sampling. Other approaches are
based on heuristics for configuration generation.

Feature Frequency Heuristic (FFH) The Feature Fre-
quency Heuristic (FFH) [18] generates configurations fol-
lowing the strategy of ensuring that each feature occurs
at least a predefined times in the resulting configurations
(corresponding thresholds can also be defined per fea-
ture). In our evaluation, we have applied the (global)
feature-wise threshold values of 5, 10, and 20.

Feature Coverage Heuristic (FCH). FCH [19, 20, 18] tries
to ensure the presence of every feature combination of
size 𝑡 in the generated data. This approach could be
applied in different ways, for example, by generating
all possible 𝑡-way feature combinations. We used the
ACTS tool5 provided by [21], which generates so-called
covering arrays [22]. This way, we generated data sets
with 2-way and with 3-way coverage. Higher coverage
comes at very high computational costs for larger models
which forced us to omit corresponding synthetizations
with our used ACTS tool [21].

5https://csrc.nist.gov/projects/automated-combinatorial-testing-for-
software.

41

Table 2
Constraint solver performance with k-nearest neighbor based (following the nearest neighbor selection approach of Formula
1) search heuristics recommendations. In this context, the constraint solver performance of different feature models has
been evaluated. Compared to standard solver runtimes (without heuristics recommendations – see Table 4)) , we can observe
significant corresponding runtime improvements. Values in bold indicate the best configuration synthesis strategy, values
with a grey background the best corresponding 𝑘 value.

Linux UClinux-distribution Busybox WeaFQAS REAL-FM-11 MobileMedia
k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

N = 100 366.39 371.05 371.82 370.39 30.20 29.31 29.21 29.23 6.17 5.93 5.92 5.93 0.49 0.36 0.36 0.35 0.17 0.10 0.10 0.09 0.13 0.08 0.07 0.07
N = 200 371.71 374.69 374.33 372.28 30.13 30.72 30.08 30.08 6.02 6.07 6.21 6.30 0.37 0.36 0.37 0.38 0.07 0.07 0.07 0.07 0.06 0.05 0.05 0.05
N = 500 378.97 375.05 379.77 381.11 30.56 30.45 30.57 30.98 6.54 6.52 6.56 6.59 0.41 0.41 0.42 0.42 0.09 0.12 0.12 0.12 0.06 0.06 0.06 0.06
N = 1000 384.09 378.06 377.27 379.48 32.38 32.15 32.38 32.15 7.54 7.79 7.67 7.67 0.50 0.52 0.51 0.52 0.11 0.11 0.12 0.12 0.08 0.08 0.08 0.08
N = 2000 394.45 393.54 392.77 390.67 36.60 36.64 36.75 36.96 9.24 8.73 8.87 9.03 0.67 0.66 0.68 0.67 0.17 0.17 0.17 0.17 0.12 0.12 0.12 0.13
N = 10000 500.68 510.78 484.87 510.41 69.44 70.38 69.36 70.01 19.76 19.86 21.31 21.54 3.51 3.38 3.57 3.60 0.73 0.75 0.74 0.76 0.53 0.53 0.52 0.53

Random 1
4
N 406.34 387.72 386.92 389.04 31.55 31.79 31.52 31.46 6.17 6.14 6.19 6.12 0.34 0.34 0.34 0.34 0.06 0.06 0.06 0.06 0.04 0.04 0.03 0.04

Random 1
2
N 419.47 401.34 399.21 405.95 32.17 31.61 32.07 31.77 6.46 6.46 6.46 6.44 0.35 0.35 0.35 0.35 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random 3
4
N 422.74 424.84 426.05 450.48 33.25 33.40 33.32 33.15 6.79 6.73 6.75 6.73 0.35 0.36 0.36 0.36 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random N 444.35 440.96 438.66 438.72 34.62 34.45 34.79 34.50 6.99 7.03 7.04 7.04 0.36 0.37 0.37 0.37 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
Random 2N 525.98 537.85 534.80 513.28 42.60 41.66 40.95 41.43 8.12 8.37 8.48 8.47 0.39 0.39 0.40 0.40 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.04
Random 3N 632.08 643.38 615.72 635.11 48.20 47.78 48.31 48.44 9.73 9.77 9.90 9.76 0.42 0.42 0.42 0.43 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.05
FCH (2-Way) - - - - - - - - - - - - - - - - 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.03
FCH (3-Way) - - - - - - - - - - - - - - - - 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

FFH (5) 386.46 374.25 373.67 374.49 28.68 28.74 28.70 28.69 6.11 5.88 5.92 5.89 0.35 0.35 0.35 0.35 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FFH (10) 372.84 371.83 374.77 378.29 29.14 29.21 29.20 29.14 6.00 5.96 5.94 5.95 0.35 0.36 0.36 0.36 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FFH (20) 377.96 379.57 376.61 380.04 30.17 30.17 30.15 30.20 6.06 6.05 6.05 6.07 0.37 0.38 0.38 0.38 0.06 0.06 0.06 0.07 0.04 0.04 0.04 0.04

Table 3
Constraint solver performance with k-nearest neighbor based search heuristics recommendations (following the nearest
neighbor selection approach of Formula 2). Again, the constraint solver performance of different feature models has been
evaluated. Using this approach, we can observe further solver runtime improvements compared to the basic k-nearest neighbor
based approach. Note that for 𝑘 = 1 the performance values are the same as in Table 2 due to the fact that the same heuristics
are selected in this case.

Linux UClinux-distribution Busybox WeaFQAS REAL-FM-11 MobileMedia
k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

N = 100 366.39 371.52 385.70 373.99 30.20 29.03 29.10 29.16 6.17 5.96 5.97 5.98 0.49 0.35 0.36 0.36 0.17 0.08 0.07 0.07 0.13 0.06 0.05 0.06
N = 200 371.71 374.70 376.70 377.71 30.13 30.14 30.10 30.87 6.02 6.06 6.04 6.14 0.37 0.37 0.37 0.38 0.07 0.07 0.07 0.07 0.06 0.05 0.05 0.05
N = 500 378.97 381.00 377.46 379.25 65.91 30.26 31.76 33.02 6.54 6.50 6.54 6.55 0.41 0.42 0.43 0.42 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06
N = 1000 384.09 381.19 380.19 381.54 32.38 32.37 32.46 32.67 7.54 7.67 7.62 7.69 0.50 0.56 0.50 0.50 0.11 0.11 0.12 0.12 0.08 0.08 0.08 0.09
N = 2000 394.45 392.21 394.54 388.43 36.60 36.66 36.62 36.57 9.24 8.95 8.74 8.93 0.67 0.66 0.68 0.67 0.17 0.18 0.17 0.18 0.12 0.12 0.12 0.13
N = 10000 500.68 505.10 502.58 514.55 69.44 70.19 69.13 69.67 19.76 20.44 20.10 19.83 3.51 3.53 3.66 3.72 0.73 0.74 0.75 0.74 0.53 0.53 0.53 0.53

Random 1
4
N 406.34 389.73 391.04 391.56 31.55 32.02 31.82 32.04 6.17 6.10 6.11 6.13 0.34 0.34 0.34 0.35 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random 1
2
N 419.47 405.14 402.24 402.53 32.17 31.87 31.89 31.71 6.46 6.49 6.47 6.49 0.35 0.35 0.35 0.36 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random 3
4
N 422.74 423.54 426.13 421.33 33.25 33.64 33.39 33.82 6.79 6.75 6.74 6.77 0.35 0.36 0.36 0.37 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random N 444.35 442.24 441.59 440.81 34.62 34.34 34.60 35.09 6.99 7.00 7.00 7.01 0.36 0.37 0.37 0.38 0.06 0.06 0.06 0.07 0.04 0.04 0.04 0.04
Random 2N 525.98 528.67 546.50 515.19 42.60 41.43 41.10 42.04 8.12 8.41 8.52 8.60 0.39 0.39 0.40 0.40 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.05
Random 3N 632.08 641.79 630.38 636.14 48.20 47.70 48.23 47.99 9.73 9.39 9.47 9.51 0.42 0.43 0.43 0.44 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.05
FCH (2-Way) - - - - - - - - - - - - - - - - 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FCH (3-Way) - - - - - - - - - - - - - - - - 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

FFH (5) 386.46 374.04 373.87 371.93 28.68 28.69 28.76 28.82 6.11 5.95 6.03 5.98 0.35 0.35 0.35 0.35 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FFH (10) 372.84 376.19 373.66 374.67 29.14 29.15 29.16 29.28 6.00 5.98 5.99 6.00 0.35 0.36 0.36 0.37 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FFH (20) 377.98 377.64 379.47 375.97 30.17 29.88 29.95 29.95 6.06 6.04 6.05 6.09 0.37 0.37 0.38 0.38 0.06 0.06 0.06 0.07 0.04 0.04 0.04 0.05

5. Evaluation
Overall Evaluation Approach. On the basis of the
discussed data synthesis and recommendations, we now
present the results of a performance evaluation. We have
compared solver runtimes with default solver settings
with our recommendation based approaches. For the
standard setting, we have measured the time needed by
the solver to find a solution (see Formula 3).

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒(𝑠𝑜𝑙𝑣𝑒𝑟) (3)

For settings including heuristics recommendation, the
runtime calculation also needs to take into account near-
est neighbor (NN) identification and heuristics recom-
mendation (see Formula 4).

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒(𝑁𝑁)+𝑡𝑖𝑚𝑒(𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛)+𝑡𝑖𝑚𝑒(𝑠𝑜𝑙𝑣𝑒𝑟)
(4)

Overall, we have compared six different feature mod-
els6 which significantly differ in terms of the number of
variables and the number of corresponding feature model
constraints. Tables 2–3 provide an overview of the run-
time performance of the used constraint solver Choco7 in
scenarios where 10% of the user requirements have been
specified (randomly assigned) for the new configuration
task. To avoid evaluation biases, for each setting (syn-
thesizer strategy × feature model), we have generated
150 test configuration tasks. In addition, to avoid biases
in the training data set, we have generated 5 training
datasets for the mentioned settings. With this, we have
measured the average runtime needed for solving the
configuration task (see also Formulae 3 – 4).

Comparison of Synthesis Strategies. Independent
of the used synthesis strategy, solver performance can be

6See github.com/diverso-lab/benchmarking [13] and the S.P.L.O.T.
repository [14].

7See choco-solver.org.

42

Table 4
Feature models used for evaluating the different heuristics rec-
ommendation approaches (also including the standard solver
runtime (in milliseconds) needed for calculating a solution for
a configuration task).

Model |𝑉 | |𝐶| solver runtime [ms]

Linux 6467 13972 771.93
uClinux-distribution 1580 1793 65.91
busybox 854 905 13.96
WeaFQAS 179 100 1.30
REAL-FM-11 67 64 0.49
mobilemedia 43 32 0.07

significantly improved with search heuristics recommen-
dation, for example, in the context of the Linux feature
model (see Table 4), runtimes can be reduced by half.
The analysis of the different data synthesis approaches
showed that approaches generating smaller datasets in
general perform best which can partially explained by the
fact that the effort of determining nearest neighbors is re-
duced. The best performing synthesis approach for small
models (REAL-FM-11 Model and MobileMedia Model) is
Feature Coverage Heuristic (2-way) – due to computa-
tional overheads, evaluations for larger models have been
omitted. For the remaining settings, in the majority of
the cases the best performing synthesis approach is the
Feature Frequency Heuristic (FFH) with threshold 𝑡 = 5.

Comparison of K-Nearest Neighbor Approaches.
When comparing k-nearest neighbor and weighted k-
nearest neighbor based heuristics recommendation, we
can observe that both approaches result in a similar solver
performance, however, weighted k-nearest neighbor ap-
pears to be the more stable approach which is less sus-
ceptible to outliers (in terms of low solver performance).

Comparison of 𝑘-Values. When comparing different
𝑘-values, we can observe a tendency that more complex
featuremodels (and corresponding constraint satisfaction
problems) tend to perform better with increasing 𝑘-sizes.
This can be partially explained by the fact that larger
models (with larger configuration/solution spaces) need
a higher k-value for achieving a certain coverage of the
search space. On the other hand, the additional efforts to
be taken into account for increasing k-sizes (e.g., in terms
of additional efforts in nearest neighbor determination)
can to some extent be compensated by higher-quality
variable (value) ordering heuristics.

6. Threats to Validity
The major objective of the presented work is constraint
solver optimization, however, the presented approach
could also be applied in other application domains such

as operating system optimization and the optimization
of production schedules. We regard corresponding evalu-
ations as a major focus of our future work. We are aware
of the variety of FM knowledge representations – not
all of these representations will directly profit from the
concepts presented in this paper (since we focused on
specific constraint solver heuristics). On the one hand,
we regard related developments, i.e., learning other types
of search heuristics, as a major focus of future research.
On the other hand, we want to emphasize that the pre-
sented collaborative recommendation approaches can be
applied as such in other settings with a focus on the reuse
of reasoning knowledge. We want to emphasize that we
intentionally focused on comparing (memory-based) col-
laborative recommendation approaches. Future work
will include evaluations with model-based (e.g., neural
networks) collaborative recommendation approaches. Fi-
nally, we are also aware of different types of paralleliza-
tion approaches helping the improve search efficiency
(see, for example, [23, 24]). We regard a direct compari-
son with such approaches a major task for future work.

7. Conclusions
In this paper, we have presented an approach to recom-
mend constraint solver search heuristics (variable order-
ings as well as variable values orderings) which help
to improve the performance of constraint solver based
feature model configuration. We have applied and com-
bined different types of data synthesis strategies and cor-
responding collaborative recommendation approaches
which have been used as a basis for recommending search
heuristics for new feature model configuration tasks. The
results of our performance evaluation show that an ap-
proach to the recommendation of search heuristics com-
bined with a well-fitted data synthesis approach can lead
to significant performance improvements in feature con-
figuration (in our evaluation settings, we could observe
significant performance improvements of around 50%
(and more) compared to standard solver runtimes). Major
issues for future work are the evaluation of our approach
in further domains (e.g., operating systems optimization)
and the development/inclusion of model-based recom-
mendation approaches.

References
[1] D. Benavides, A. Felfernig, J. Galindo, F. Reinfrank,

Automated Analysis in Feature Modelling and Prod-
uct Configuration, in: ICSR’13, number 7925 in
LNCS, Springer, Pisa, Italy, 2013, pp. 160–175.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson,
Feature-oriented Domain Analysis (FODA) – Feasi-

43

bility Study, Technical Report, SEI, Carnegie Mellon
University, Pittsburgh, PA, USA, 1990.

[3] D. Benavides, P. Trinidad, A. Ruiz-Cortés, Au-
tomated reasoning on feature models, in:
CAiSE’05, Springer-Verlag, Berlin, Heidelberg, 2005,
p. 491–503.

[4] A. Popescu, S. Polat-Erdeniz, A. Felfernig, M. Uta, ,
M. Atas, V. Le, K. Pilsl, M. Enzelsberger, T. Tran, An
Overview of Machine Learning Techniques in Con-
straint Solving, Journal of Intelligent Information
Systems 58 (2022) 91–118.

[5] A. Falkner, A. Felfernig, A. Haag, Recommenda-
tion Technologies for Configurable Products, AI
Magazine 32 (2011) 99–108.

[6] M. Ekstrand, J. Riedl, J. Konstan, Collaborative fil-
tering recommender systems, Found. Trends Hum.-
Comput. Interact. 4 (2011) 81–173.

[7] K. Meel, Counting, Sampling, and Synthesis: The
Quest for Scalability, in: IJCAI-22, 2022, pp.
5816–5820.

[8] J. A. Pereira, M. Acher, H. Martin, J. Jézéquel, Sam-
pling effect on performance prediction of config-
urable systems: A case study, in: ACM/SPEC Inter-
national Conference on Performance Engineering,
ICPE ’20, ACM, 2020, p. 277–288.

[9] J. A. Pereira, M. Acher, H. Martin, J. Jézéquel, G. Bot-
terweck, A. Ventresque, Learning software con-
figuration spaces: A systematic literature review,
Journal of Systems and Software 182 (2021) 111044.

[10] S. Polat-Erdeniz, A. Felfernig, R. Samer, M. Atas,
Matrix factorization based heuristics for constraint-
based recommenders, in: 34th ACM/SIGAPP Sym-
posium on Applied Computing (SAC ’19), ACM,
Limassol, Cyprus, 2019, pp. 1655–1662.

[11] M. Uta, A. Felfernig, D. Helic, V. Le, Accuracy- and
consistency-aware recommendation of configura-
tions, in: ACM International Systems and Software
Product Line Conference (SPLC’22), ACM, Graz,
Austria, 2022, pp. 79–84.

[12] V. Le, A. Felfernig, M. Uta, T. Tran, C. Vidal, Wipe-
OutR: Automated Redundancy Detection for Fea-
ture Models, in: 26th ACM International Systems
and Software Product Line Conference, ACM, 2022,
pp. 164–169.

[13] R. Heradio, D. Fernandez-Amoros, J. J. Galindo,
D. Benavides, D. Batory, Uniform and scalable sam-
pling of highly configurable systems, Empirical
Software Engineering 27 (2022) 1–34.

[14] M. Mendonca, M. Branco, D. Cowan, S.P.L.O.T.:
Software Product Lines Online Tools, in: 24th ACM
SIGPLAN Conference Companion on Object Ori-
ented Programming Systems Languages and Appli-
cations, OOPSLA ’09, ACM, 2009, pp. 761–762.

[15] M. Acher, P. Temple, J.-M. Jézéquel, J. Galindo,
J. Martinez, T. Ziadi, VaryLATEX: Learning Pa-

per Variants That Meet Constraints, in: 12th In-
ternational Workshop on Variability Modelling of
Software-Intensive Systems, ACM, 2018, p. 83–88.

[16] A. Grebhahn, C. Rodrigo, N. Siegmund, F. Gaspar,
S. Apel, Performance-influence models of multigrid
methods: A case study on triangular grids, Concur-
rency and Computation: Practice and Experience
29 (2017).

[17] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, Wą-
sowski, Variability-aware performance prediction:
A statistical learning approach, in: 28th IEEE/ACM
International Conference on Automated Software
Engineering, ASE ’13, IEEE Press, Silicon Valley,
CA, USA, 2013, pp. 301–311.

[18] A. Sarkar, J. Guo, N. Siegmund, S. Apel, K. Czar-
necki, Cost-efficient sampling for performance pre-
diction of configurable systems, in: 30th IEEE/ACM
International Conference on Automated Software
Engineering, ASE ’15, IEEE Press, Lincoln, Ne-
braska, 2015, pp. 342–352.

[19] C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo,
S. Apel, Distance-based sampling of software con-
figuration spaces, in: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering
(ICSE), IEEE, Montrea, Quebec, Canada, 2019, pp.
1084–1094.

[20] M. Lillack, J. Müller, U. Eisenecker, Improved
prediction of non-functional properties in soft-
ware product lines with domain context, in:
S. Kowalewski, B. Rumpe (Eds.), Software Engi-
neering 2013, Gesellschaft für Informatik e.V., Bonn,
2013, pp. 185–198.

[21] L. Yu, Y. Lei, R. Kacker, D. Kuhn, Acts: A combinato-
rial test generation tool, in: 6th IEEE International
Conference on Software Testing, Verification and
Validation, IEEE, Luxembourg, 2013, pp. 370–375.

[22] C. Colbourn, Combinatorial Aspects of Covering
Arrays, Le Matematiche 59 (2004) 125–172.

[23] L. Bordeaux, Y. Hamadi, H. Samulowitz, Experi-
ments with Massively Parallel Constraint Solving,
in: IJCAI’09, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2009, pp. 443–448.

[24] V. Le and C. Vidal Silva and A. Felfernig and D. Be-
navides and J. Galindo and T.N.T. Tran, FastDiagP:
An Algorithm for Parallelized Direct Diagnosis, in:
AAAI’23, 2023, pp. 6442–6449.

44

Solving Multi-Configuration Problems: A Performance
Analysis with Choco Solver
Benjamin Ritz1,∗, Alexander Felfernig1, Viet-Man Le1 and Sebastian Lubos1

1Graz University of Technology, Inffeldgasse 16b, 8010 Graz, Austria

Abstract
In many scenarios, configurators support the configuration of a solution that satisfies the preferences of a single user. The
concept of multi-configuration is based on the idea of configuring a set of configurations. Such a functionality is relevant
in scenarios such as the configuration of personalized exams, the configuration of project teams, and the configuration of
different trips for individual members of a tourist group (e.g., when visiting a specific city). In this paper, we exemplify the
application of multi-configuration for generating individualized exams. We also provide a constraint solver performance
analysis which helps to gain some insights into corresponding performance issues.

Keywords
Knowledge-based Configuration, Multi-Configuration, Performance Analysis

1. Introduction
Configuration is the process of assembling basic compo-
nents into a complex product while taking into account a
set of constraints [1, 2, 3, 4]. Most existing configurators
are based on the assumption that a solution (configu-
ration) is developed for a single user. On the contrary,
group-based configuration [5, 6] focuses on the configu-
ration of a solution for a group of users. Such a config-
uration must satisfy the preferences of each individual
user as much as possible [7, 8]. Group-based configura-
tion can be further extended to allow the configuration
of a set of solutions based on the preferences of one or
multiple users. Such a multi-configuration problem [9]
includes a set of constraints specifying restrictions with
regard to (1) the combination of multiple solutions and (2)
properties of a specific solution. Scenarios including such
configuration sets may benefit from multi-configuration.
Related example scenarios are the following.
Multi-exam configuration. individual exams are con-

figured for each student, where related constraints are
specified by instructors and possibly also students. A
configurator can support instructors during the exam
preparation phase and helps in the prevention of cheat-

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
∗Corresponding author.
Envelope-Open ritz@student.tugraz.at (B. Ritz);
alexander.felfernig@ist.tugraz.at (A. Felfernig);
vietman.le@ist.tugraz.at (V. Le); vietman.le@ist.tugraz.at (S. Lubos)
GLOBE https://www.tugraz.at/ (B. Ritz); https://www.felfernig.eu
(A. Felfernig); https://www.tugraz.at/ (V. Le);
https://www.tugraz.at/ (S. Lubos)
Orcid 0009-0000-7774-6693 (B. Ritz); 0000-0003-0108-3146
(A. Felfernig); 0000-0001-5778-975X (V. Le); 0000-0002-5024-3786
(S. Lubos)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ing through the generation of individualized exams [10].
Project team assignment. persons are assigned to teams

such that each team has the expertise to successfully com-
plete the corresponding project (assigned to the team).
In this context, fairness aspects can play a role, for ex-
ample, each team should have at least similar chances to
complete a project within pre-defined time limits [9].
Generation of test cases. The automated generation

of test cases can be considered as a multi-configuration
problem, where input values need to be generated in such
a way that given coverage criteria are fulfilled [11].
Holiday planning. Members of tourist groups often

do not share the same interests during excursions [12],
i.e., which sightseeing destinations to visit. Therefore, a
configurator could configure different trips for subgroups
of tourists based on their preferences.

Configuration space learning. Many (software) systems
(e.g., operating systems) offer a high degree of configura-
bility. In this context, it is difficult to find the optimal
configuration settings [13] also due to the fact that it is
impossible to test all possible settings to find the optimal
one. Multi-configuration can support the identification
of test configurations that help to learn dependencies
between configuration parameters.
In the context of multi-exam configuration, we have

built a software library that helps to configure exams.
Example inputs are the number of examinees, a pool of
questions, and a set of constraints specifying preferences
of instructors and examinees. The outcome is a set of
questions for each examinee. Constraint solving in our
implementation is based on the Choco constraint solver.1

In this paper, we show how the problem of multi-exam
configuration can be represented as a constraint satisfac-
tion problem (CSP) [14]. We exemplify different types of
constraints supported by our configurator and also show

1https://choco-solver.org/

45

how the preferences of students can (potentially) be taken
into account. In order to analyze constraint solver per-
formance, we evaluate the runtime performance of an
open source constraint solver (Choco) on the basis of a
typical real-world exam configuration scenario.
The remainder of this paper is organized as follows.

In Section 2, we introduce a definition of a multi-
configuration task and provide an example from the do-
main of multi-exam configuration. In this context, we
also introduce and exemplify different constraint types.
Thereafter, in Section 3, we evaluate the performance
of Choco when solving multi-exam configuration tasks
also including a performance analysis when solving a
real-world configuration task. Threats to validity are
discussed in Section 4. The paper is concluded with a
discussion of open research issues in Section 5.

2. Working Example
We now give a basic definition of a multi-configuration
task (see Definition 1) (see [9]) and show howmulti-exam
configuration tasks can be introduced correspondingly.

Definition 1. A multi-configuration task can be defined
as a tuple (𝑉 , 𝐷, 𝐶) with 𝑉 = ⋃{𝑣𝑖𝑗} is a set of finite do-
main variables (𝑣𝑖𝑗 is variable 𝑗 of configuration instance
𝑖), 𝐷 = ⋃{𝑑𝑜𝑚(𝑣𝑖𝑗)} a set of corresponding domain defini-
tions, and 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑣} a set of constraints.

In the following, wewill use this definition to introduce
the task for multi-exam configuration and outline what
constraint types are supported by our configurator. In
this context, the set of constraints 𝐶 can be defined by
users represented by instructors and also students (where
this is intended).

2.1. Multi-exam configuration
Following Definition 1, a multi-exam configuration task
can be defined as follows.

• 𝑉 = {𝑞11..𝑞𝑛𝑚, 𝑞11.𝑇1..𝑞11.𝑇𝜋, .., 𝑞𝑛𝑚.𝑇1..𝑞𝑛𝑚.𝑇𝜋}
where 𝑞𝑖𝑗 is question 𝑗 of the exam of student 𝑖, 𝑛 is
the number of exams (students), 𝑚 is the number
of questions per exam, 𝑞𝑖𝑗.𝑇𝑘 denotes the value of
the k-th question property of question 𝑞𝑖𝑗, and 𝜋
represents the number of question properties per
question (in our case, 𝜋 = 6). Our configurator
supports the following question properties:

1. topic - topic of the question
2. level - difficulty level of the question
3. min-duration - minimum estimated time

needed to answer the question
4. max-duration - maximum estimated time

needed to answer the question

5. type - type of the question (e.g. single/mul-
tiple choice, assignment task, etc.)

6. points - maximum number of points re-
warded for correct answers

• 𝐷 = {𝑑𝑜𝑚(𝑞11)..𝑑𝑜𝑚(𝑞𝑛𝑚), 𝑑𝑜𝑚(𝑞11.𝑇1)..𝑑𝑜𝑚(𝑞11.𝑇6),
.., 𝑑𝑜𝑚(𝑞𝑛𝑚.𝑇1)..𝑑𝑜𝑚(𝑞𝑛𝑚.𝑇6)} where 𝑑𝑜𝑚(𝑞𝑖𝑗) =
{1..Ω}, with Ω being the total number of questions
in the question pool, and 𝑑𝑜𝑚(𝑞𝑖𝑗.𝑇𝑘) is a question
property domain (one out of the following):

1. dom(topic) = {1..𝜂} where 𝜂 is the number
of defined question topics

2. dom(level) = {1..𝜇} where 𝜇 is the number
of defined question complexity levels

3. dom(min-duration) = {1..𝜏 } with 𝜏 indicat-
ing the maximum specifiable value

4. dom(max-duration) = {1..𝜅} with 𝜅 indicat-
ing the maximum specifiable value

5. dom(type) = {1..𝜃} where 𝜃 is the number
of defined question types

6. dom(points) = {1..𝜙} where 𝜙 is the maxi-
mum amount of points

• 𝐶 = {𝑐1..𝑐𝑣} where 𝑐𝛽 is the constraint identifier
and 𝑣 is the number of constraints

Importantly, depending on the question 1..Ω assigned
to a question variable 𝑞𝑖𝑗, a set of corresponding question
properties must hold, for example, if question 𝑞11 = 1,
corresponding restrictions such as 𝑞11 = 1 → 𝑞11.𝑡𝑜𝑝𝑖𝑐 =
𝐴 indicate the relevant question properties. In Subsection
3.2, we explain in which way we support this aspect in
our configuration library. Furthermore, for each student-
specific exam 𝑖, we need to include an alldifferent(𝑞𝑖1..𝑞𝑖𝑚)
constraint to avoid situations where a questions is as-
signed to the same exam twice. In our implementation,
this aspect is taken into account on the basis of set vari-
ables (see also Subsection 3.2).

2.2. Instructor constraints
Instructor constraints (defined by instructors) in 𝐶 re-
strict the set of questions that may or may not appear
in exams. Each exam must fulfil all of these constraints.
We distinguish between two types of related constraints:
intra-exam and inter-exam constraints.

2.2.1. Intra-exam constraints

Intra-exam constraints restrict which questions are eligi-
ble for being part of an exam. Such constraints refer to
each individual exam. A simple form of intra-exam con-
straints is to directly define a specific question property.
For example, let us assume that up to now a course has
covered only one (the first) topic (𝐴). As a consequence,

46

the instructor requires that only questions belonging to
topic 𝐴 are part of the first exam (see Formula 1).

∀𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐴 (1)

Furthermore, we might want to restrict the complex-
ity level of questions. For example, assuming that four
different question complexities exist, for the final exam
the instructor would like to increase the overall exam
complexity using an intra-exam constraint specifying
that all questions of each exam must have a complexity
level of at least 2 (see Formula 2).

∀𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙 ≥ 2 (2)

Intra-exam constraints allow instructors to arbitrarily
combine multiple constraints with logical operators. For
example, since multiple choice questions can generally
be answered rather quickly, an instructor could require
that every multiple choice question is of at least difficulty
level 3 (see Formula 3 where we assume question type 3
indicates multiple choice questions).

∀𝑞𝑖𝑗 ∈ 𝑉 ∶ (𝑞𝑖𝑗.𝑡𝑦𝑝𝑒 = 3 ⟹ 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙 ≥ 3) (3)

In many cases, instructors would like to be able to
specify intra-exam constraints on a more granular level.
It is possible to combine intra-exam constraints with a
corresponding scope. Constraint scopes enable instruc-
tors to specify how many questions per exam need to
satisfy a given constraint. To illustrate this aspect, we
will continue our previous example (see Formula 1). By
the time the next topic (topic 𝐵) is covered in the course,
the students will have a follow-up exam consisting of 10
questions. The instructor now wants to focus mainly on
the new topic. Therefore, they specify constraints such
that for each exam only 2 questions belong to topic 𝐴
and the remaining 8 to topic 𝐵 (see Formula 4 and 5).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐴}| = 2) (4)

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐵}| = 8) (5)

Constraint scopes also support lower and/or upper
bounds, for example, the instructor would like to keep the
follow-up exam rather simple. For this reason, between
5 and 10 questions of each exam should be easy to solve,
which is indicated by complexity level 1 (see Formula 6).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(5 ≤ |{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙 = 1}| ≤ 10) (6)

Instructors may also specify constraint scopes using
percentages in order to describe which amount of ques-
tions per exam must satisfy the question property con-
straint. For example, only between 10 and 20 percent of
questions per exam should be solvable in less than five
minutes (see Formula 7).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(0.10 ≤
|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑚𝑖𝑛-𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 5}|

𝑚
≤ 0.20)

(7)
Intra-exam constraints also support aggregations. In

the context of our evaluation settings, we support the
functions sum, average, and distinct count. For their ap-
plication, see the examples in Formulas 8–10.

1. Example (sum): The total amount of points per
exam is 100 (see Formula 8).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(
𝑚
∑
𝑗=1

𝑞𝑖𝑗.𝑝𝑜𝑖𝑛𝑡𝑠 = 100) (8)

2. Example (average): The average complexity level
of each exam is between 2 and 3. (see Formula 9).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(2 ≤
∑𝑚

𝑗=1 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙
𝑚

≤ 3) (9)

3. Example (distinct count): Each exam consists of
at least 3 different question topics (Formula 10).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐}| ≥ 3) (10)

2.2.2. Inter-exam constraints

Similar to intra-exam constraints, inter-exam constraints
restrict which questions may be part of exams. However,
they constrain how often certain question or question
properties may or may not appear in the entire exam con-
figuration. Therefore, inter-exam constraints depend on
all exams combined, instead of every exam individually.
Such constraints count, for example, how many exams
have at least one question that fulfills a given constraint.
This sum can be lower and/or upper bounded. For exam-
ple, we assume that a specific question 𝜉 is part of at least
5 exams but at most 10 (see Formula 11).

5 ≤ |{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗 = 𝜉 }| ≤ 10 (11)

As a special case of inter-exam constraints, instructors
can restrict the degree of question overlap across exams,
i.e., the number of questions that exams have in com-
mon. This is especially useful to prevent the generation
of identical or very similar exams. The degree of overlap
can be lower and upper bounded in order to restrict the

47

minimum and maximum amount of questions that pairs
of exams may share. For example (see Formula 12), the
upper bound denotes that no pair of exams exists which
shares more than 5 questions, whereas the lower bound
states that every pair of exams must share at least 2 ques-
tions. This might be useful to create a sense of fairness
among students but might lead to cheating. 𝑒𝜆 represents
a set of questions comprising all questions of exam 𝜆.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑗=1

(2 ≤ |𝑒𝑖 ∩ 𝑒𝑗| ≤ 5) (𝑖 ≠ 𝑗) (12)

The amount of exam pairs to be constrained can be
further decreased in the context of onsite exams where
a pre-defined lecture hall’s seating plan (chart) is speci-
fied. One goal in such scenarios is to prevent cheating
of students positioned in a neighborhood which can be
achieved on the basis of constraints avoiding question
overlaps in the case of students located next to each other.

Given is the following lecture hall with 5 rows and 8
seats per row (see Figure 1).

Figure 1: lecture hall seating: seat 34 and its neighbors.

The seats are labeled with the letter s and two digits.
The first digit represents its row (top to bottom) and the
second digit its position in the row (left to right). We
assume no neighboring exams may share even a single
question (see Formula 13), where 𝑘 is the number of neigh-
bors of exam 𝑖, 𝑒𝑖 is the question set assigned to exam 𝑖
(student 𝑖), and 𝑓 (𝑖, 𝑗, 𝑠) describes the set of questions of
𝑖’s j-th neighboring exam according to seating chart 𝑠.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

𝑘
⋀
𝑗=1

(|𝑒𝑖 ∩ 𝑓 (𝑖, 𝑗, 𝑠)| = 0) (13)

This allows identical exams in the configuration but
never for students right next to each other. In order to
provide a better understanding of how many constraints
approximately need to be added per seat, we have high-
lighted seat 𝑠34 (dark gray) and its neighbors (light gray)
as an example (see Figure 1). This particular seat has 8
neighbors requiring 8 constraints to be added.

2.3. Student constraints
Student constraints in 𝐶 can be specified by each student
individually. They constrain only the student’s exam, no
other exams are affected. Student constraints can only
further narrow down instructor constraints.
Example: The instructor specifies a constraint such

that between 20% and 50% of the questions of each exam
must belong to topic 𝐴 (see Formula 14).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(0.20 ≤
|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐴)}|

𝑚
≤ 0.50)

(14)
Student 𝑎 decides to restrict this constraint even further

so that only a maximum of 25% of questions of their exam
belong to topic 𝐴 (see Formula 15).

|{𝑞𝑎𝑗 ∈ 𝑉 ∶ 𝑞𝑎𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐴)}|
𝑚

≤ 0.25 (15)

3. Evaluation
We now present a performance analysis of our multi-
configuration setting.2

3.1. Real world example
We assume that (1) 450 students participate in an exam
and (2) a question pool of 45 questions individually asso-
ciated with one out of four different topic areas (topics) is
available. Each exam should consist of 𝑚 = 10 questions.
We define the following constraints (𝐶):

1. Each exam should include questions related to at
least 2 different topics.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐}| ≥ 2)

2. There is at most one multiple choice question.3

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑦𝑝𝑒 = 3}| ≤ 1)

3. 10% – 20% of the questions are assigned to com-
plexity level 4 being the most complex one.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(0.10 ≤
|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙 = 4}|

𝑚
≤ 0.20)

4. Each exam should include questions resulting in
40 points in total.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(
𝑚
∑
𝑗=1

𝑞𝑖𝑗.𝑝𝑜𝑖𝑛𝑡𝑠 = 40)

2A link to the source code of our configuration approach will be
provided in the final paper version.

3Question type 3 was assumed to be multiple choice.

48

5. Neighboring exams share at most 2 questions (as-
suming a hall 𝑠 with 22 rows and 21 seats/row).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

𝑘
⋀
𝑗=1

(|𝑒𝑖 ∩ 𝑓 (𝑖, 𝑗, 𝑠)| ≤ 2)

Considering these specific requirements, the configu-
rator yielded a solution in about one second.

3.2. Dealing with flexible upper bounds
Instead of relying on a constant number of questions per
student exam, it is also possible to support flexible lower
and upper bounds. We support this aspect by utilizing
Choco set variables. Every student exam includes a set
of questions. The domain of a set variable is (implicitly)
defined by lower and upper bound sets. The lower bound
is a set of questions that each exammust include, whereas
the upper bound defines the maximum possible question
set. In our case, the lower bound is empty and the upper
bound equals the question pool.

A varying number of questions per exam could trigger
the need for further instructor constraints, for example, to
restrict the allowed number of questions. Let us assume
a defined question pool with Ω = 3 questions ({1, 2, 3})
and 𝑛 = 2 exams (𝑒1 and 𝑒2) represented as Choco set
variables (model is a Choco model object).

e1 = model.setVar(lb:{}, ub:{1, 2, 3})
e2 = model.setVar(lb:{}, ub:{1, 2, 3})

Now, we want to specify that each exam 𝑒𝑖 (of student 𝑖)
needs to include at least two and at most three questions.
In Choco, this constraint would be defined as follows.

e1.setCard(model.intVar(2, 3))
e1.setCard(model.intVar(2, 3))

In this simplified setting, the possible solution sets for
both, 𝑒1 and 𝑒2 are: {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}.

If we also want to define restrictions on allowed ques-
tion properties, the solver needs to know the question
properties of each individual question. For scalability
reasons, we avoid to define question/property relation-
ships on the basis of constraints. Instead, we support a
key-value data structure that allows the identification
of question properties on the basis of the corresponding
question 𝐼𝐷 ∈ {1..Ω}. Given such a structure, we are now
able to define constraints referring to question properties,
for example: in each exam, the number of questions of
topic 𝐴 is exactly 2.
In Choco, no related built-in constraints exist. We

have defined a custom constraint by extending the Prop-
agator class and implemented the two required methods
propagate and isEntailed.4 The former is called in each it-
eration of the solving process. It tries to find solutions by
4A GitHub source code reference will be included in the final paper.

counting the number of questions that belong to the spec-
ified topic. If the current branch of the solving process
cannot satisfy the constraint, a contradiction is indicated.
When taking into account this constraint, the possible
solutions for 𝑒1 and 𝑒2 are {1, 2, 3} and {1, 3}.

3.3. Evaluation with synthesized data
We have also evaluated the solver performance with syn-
thesized multi-exam configuration tasks along the dimen-
sions of number of questions and number of exams. Each
task utilizes the same 5 constraints as discussed in Subsec-
tion 3.1. We choose the lecture hall size depending on the
amount of exams 𝑛, using the formula ⌈√𝑛⌉, since this is a
fairly simple way to assure that all students will fit in the
lecture hall and to keep a good ratio between rows and
seats per row. The results of this performance evaluation
are summarized in Table 1 showing acceptable runtime
performances in the context of typical exam settings as
well as extreme cases of around 1000 questions and up
to 1000 students inducing solver runtimes up to nearly
3 minutes. Notice that a smaller question pool size does
not always result in faster runtime.

4. Threats to Validity
In the context of the reported evaluation, we have ap-
plied the standard settings of the used constraint solver.
A major topic of further work is to further improve run-
time performance on the basis of different approaches
supporting the learning of solver search heuristics (see,
e.g., [15]). Fairness is a crucial aspect to be taken into
account when it comes to the automated generation of
exams. In this work, we have taken this aspect into ac-
count a.o. on the basis exam-specific criteria regarding
the percentage of to-be-included questions that are re-
lated to a specific complexity level. For future work, we
plan to further refine this aspect, for example, on the
basis of optimization functions that help to balance the
complexity of individual exams on a more fine-grained
level. Finally, in real-world settings, we often have to deal
with situations where a given set of constraints is incon-
sistent, i.e., no solution could be identified. In our future
work, we will integrate corresponding repair concepts
which will help users to find ways out from the so-called
no solution could be found dilemma. Such approaches can
be based o.a. on model-based diagnosis [16].

5. Conclusions
In this paper, we have introduced multi-configuration as
a useful approach in scenarios requiring solution set con-
figuration, for example, exam configuration and project

49

Table 1
Constraint solver (configurator) performance based on synthesized settings differing in terms of number of questions and
number of student-specific exams using the constraints introduced in Subsection 3.1. In this context, 𝑠=seconds and 𝑚=minutes.
Cells without unit of measurement represent runtimes in 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠.

Exams
1 5 10 25 50 75 100 250 500 750 1000

25 14,33 328,33 397,67 349,00 425,33 475,67 516,00 1183,33 3340,33 6,30s 10,10s
50 21,67 34,00 80,33 100,67 143,33 153,00 183,33 448,67 1231,33 2572,33 3769,00
75 26,67 46,33 63,00 88,33 155,33 221,33 234,00 686,67 1689,00 3387,00 5,66s
100 23,67 55,33 80,33 161,00 172,67 318,00 314,00 849,33 2345,00 4899,00 7,36s
150 36,00 93,67 102,67 193,67 301,00 462,00 485,00 1163,33 3751,00 7,08s 12,80s
250 109,00 146,33 185,33 383,33 562,67 725,33 934,33 2540,67 7,21s 14,38s 20,98s
500 114,00 269,33 407,33 878,00 1638,33 2174,33 3020,33 7,64s 19,27s 35,75s 55,30s
750 168,33 415,67 719,67 1677,33 3163,33 5,02s 5,09s 15,92s 33,41s 1,14m 1,50m

Q
ue

st
io
ns

1000 250,33 651,67 1052,67 2942,67 5,01s 8,08s 9,04s 27,18s 1,06m 1,81m 2,67m

team configuration. In the context of multi-exam config-
uration, we have shown a corresponding configuration
task representation as a constraint satisfaction problem.
We have evaluated the performance of the proposed ap-
proach on the basis of an example real-world configura-
tion task as well as a collection of synthesized configura-
tion tasks (differing in terms of the number of pre-defined
questions and the number of ”to be generated” exams).
Our future work will include the integration of further
concepts supporting solver performance optimization.
Furthermore, we will include features, for example, in
terms of optimization functions, that help to take into ac-
count aspects such as fairness in a more explicit fashion.
Finally, we plan to include concepts that will allow us
to take into account historical data, for example, when
generating a set of ”new” exams, the frequency of ques-
tions already ”used” in previous exams should be taken
into account in order to avoid situations where specific
questions are posed too often.

References
[1] M. Stumptner, An overview of knowledge‐based

configuration, AICom 10 (1997) 111–125.
[2] U. Junker, Configuration, in: F. Rossi, P. van Beek,

T. Walsh (Eds.), Handbook of Constraint Program-
ming, Elsevier, 2006, pp. 837–873.

[3] L. Hvam, N. Mortensen, J. Riis, Product Customiza-
tion, Springer, 2008.

[4] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen,
Knowledge-based Configuration – From Research
to Business Cases, Elsevier, 2014.

[5] A. Felfernig, M. Atas, T. Tran, M. Stettinger, To-
wards group-based configuration, in: ConfWS’16,
Toulouse, France, 2016, pp. 69–72.

[6] V. Le, T. Tran, A. Felfernig, Consistency-based inte-
gration of multi-stakeholder recommender systems
with feature model configuration, in: 26th ACM

Intl. Systems and Software Product Line Confer-
ence, ACM, New York, NY, USA, 2022, p. 178–182.

[7] A. Felfernig, M. Stettinger, G. Ninaus, M. Jeran,
S. Reiterer, A. Falkner, G. Leitner, J. Tiihonen, To-
wards open configuration, in: ConfWS’14, Novi
Sad, Serbia, 2014, pp. 89–94.

[8] M. Atas, A. Felfernig, S. Polat-Erdeniz, A. Popescu,
T. Tran, M. Uta, Towards psychology-aware
preference construction in recommender systems:
Overview and research issues, J. Intell. Inf. Syst. 57
(2021) 467–489. doi:10.1007/s10844- 021- 00674- 5 .

[9] A. Felfernig, A. Popescu, M. Uta, V. Le, S. Erdeniz,
M. Stettinger, M. Atas, T. Tran, Configuring mul-
tiple instances with multi-configuration, in: Con-
fWS’21, Vienna, Austria, 2021, pp. 45–47.

[10] V. Le, T. Tran, M. Stettinger, L. Weißl, A. Felfernig,
M. Atas, S. Erdeniz, A. Popescu, Counteracting
exam cheating by leveraging configuration and rec-
ommendation techniques, in: ConfWS’21, Vienna,
Austria, 2021, pp. 73–80.

[11] A. Gotlieb, B. Botella, M. Rueher, Automatic
test data generation using constraint solving tech-
niques, in: ACM SIGSOFT Intl. Symp. on Software
Testing and Analysis, Florida, USA, 1998, pp. 53–62.

[12] A. Jameson, S. Baldes, T. Kleinbauer, Two methods
for enhancing mutual awareness in a group recom-
mender system, in: Working Conf. on Advanced
Visual Interfaces, Gallipoli, Italy, 2004, pp. 447–449.

[13] J. Pereira, M. Acher, H. Martin, J. Jézéquel, G. Bot-
terweck, A. Ventresque, Learning software con-
figuration spaces: A systematic literature review,
Journal of Systems and Software 182 (2021) 111044.

[14] F. Rossi, P. van Beek, T. Walsh, Handbook of Con-
straint Programming, Elsevier, 2006.

[15] M. Uta, A. Felfernig, D. Helic, V. Le, Accuracy- and
Consistency-Aware Recommendation of Configu-
rations, in: SPLC’2022, ACM, 2022, pp. 79–84.

[16] R. Reiter, A theory of diagnosis from first principles,
Artificial Intelligence 32 (1987) 57–95.

50

Decision Heuristics in a Constraint-based Product
Configurator
Matthias Gorenflo1, Tomáš Balyo1, Markus Iser2,3 and Tobias Ostertag1,∗

1CAS Software AG, CAS-Weg 1 - 5, 76131 Karlsruhe, Germany
2Karlsruhe Institute of Technology (KIT), KIT-Department of Informatics, Karlsruhe, Germany
3University of Helsinki, Department of Computer Science / HIIT, Helsinki, Finland

Abstract
This paper presents an evaluation of decision heuristics of solvers of the Boolean satisfiability problem (SAT) in the context of
constraint-based product configuration. In product configuration, variable assignments are searched in real-time, based on
interactively formulated user requirements. Operating on user’s successive input poses new requirements, such as low-latency
interactivity as well as deterministic and minimal implicit product changes. This work presents a performance evaluation
of several heuristics from the SAT literature along with new variants that address the special real-time requirements of
incremental product configuration. Our results show that the execution time on an industrial benchmark can be significantly
improved with our new heuristic.

Keywords
Configuration, Constraint-based Products, Decision Heuristics, Boolean Satisfiabiliry Problem (SAT)

1. Introduction

1.1. Motivation
In wake of an increasing globalization, the demand for
customized and personalized products rises in manufac-
turing and service industries, which previously only uti-
lized the advantages of mass production to offer stan-
dardized products for a good value. Shaped by Stanley
Davis and his 1987 book Future Perfect [1], this new fron-
tier is called mass customization and wants to meet the
product needs of individual customers. ”At its core, is a
tremendous increase in variety and customization with-
out a corresponding increase in costs. At its limit, it is the
mass production of individually customized goods and
services. At its best, it provides strategic advantage and
economic value” [2]. This results in increasingly complex
models of the product variants that can be configured,
if the model shall offer many intertwined parameters a
customer is allowed to choose from. Various domains
are applicable for product configuration with some of the
more complex product models revolving around the as-
sembly of different vehicles. But the decision, if every re-
quest of a customer is viable, can become troublesome for
even reasonably sized models. In remedying the solving
process automatically, so called knowledge-based con-

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
∗Corresponding author.
Envelope-Open markus.iser@kit.edu (M. Iser); Tobias.Ostertag@cas.de
(T. Ostertag)
Orcid 0000-0003-2904-232X (M. Iser); 0000-0003-3294-3807
(T. Ostertag)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

figuration systems (or simply product configurators) [3]
play a key role. The product configurator is a tool to on
one hand decide on a product that respects the demands
of the user, which can be a customer, while conforming
to the limitations and constraints of the manufacturer
on the other hand. The description of the product model
lies at the core and spans the solution space, which is the
set of all possible product variants. This work focuses
on an interactive configuration process. During the con-
figuration of a product, a user performs adjustments to
the current product by selecting from different parts or
properties. Incremental requests coming from the user
are called user wishes and the configurator has to check
the validity of them.

A method of realizing the constraints of a product
model is to utilize propositional logic [4]. Hereby, for a
configuration to be valid, it has to satisfy a set of propo-
sitional formulas expressing the product configuration
problem as shown in [5]. A SAT solver is then capable
of checking if all user wishes can be satisfied under the
propositional representation of the configurator’s specifi-
cations. The truth assignment then holds the information
about the concrete manifestation of the configured prod-
uct.

The complexity of the SAT problem is in non-
deterministic polynomial time (NP) which can lead to
long computation times, exponential in the size of the
problem. Contrary to that is the interactive nature of
product configuration, where users expect a fast response
regarding the feasibility of their latest demand. The
shorter and faster the time spent on satisfiabilty check-
ing, the shorter the waiting time for users. Minimizing
the time of the SAT solving therefore plays an essential

51

role for interactive, low-latency product configuration.
Luckily, many SAT formulas that model real world

problems can be solved quickly thanks to the classic DPLL
algorithm [6], which has seen many improvements and
additions over the last decades. Sophisticated heuristics
play a key role here. This is especially true for decision
and branching heuristics, which control the ordering and
values of the algorithm’s truth assignments [7].

The area of product configuration tends to place differ-
ent demands on a solver than the classical SAT formulas.
The process of incremental product configuration gener-
ally leads to less complex computations, since we solve
many simple formulas and not just one complex formula.

New challenges arise when the last user requirement
cannot be met with a previously selected configuration.
The possibility of stating conflicting requirements is in-
tentional, as the user may not be aware of all the interac-
tions between different requirements, or may be in the
process of making fundamental changes. In either case,
the user relies on feedback from the configurator, and it is
the solver’s job to calculate a new valid product configu-
ration. This amounts to solving an optimization problem
where the new configuration contains as few changes
as possible while omitting as few user requirements as
possible. To realize this idea, the configurator weights
the user’s requirements so that changes are associated
with costs.

Furthermore, not only a single optimal solution is of in-
terest but every solution with the smallest cost or within
a certain delta. So the user is able to select one of the best
fitting alternatives. The optimization problem can be re-
alized as aminimum-cost satisfiability (MinCostSAT) prob-
lem or an equivalent maximum satisfiability (MaxSAT)
problem. Nevertheless, the additional challenges posed
by product configuration also present new opportunities
to derive better heuristics for this specific use case.

1.2. Goals and Contributions
This paper lays the focal point on the goal of reaching an
as optimal as possible performance of decision heuristics
for SAT in the context of incremental product configura-
tion with weighted user requirements as described in the
previous section. We implemented four decision heuris-
tics under the additional requirement of deterministic
user experience, i.e., the configurator keeps producing
the same results. So a user receives the same selection
of alternative configurations for every repetition of a
specific interactive configuration sequence. The perfor-
mance of various known branching heuristics from SAT
solving as well as new heuristic ideas are evaluated in
the product configuration context. We examine how the
different sub-formula types and literal types can be ex-
ploited effectively in these heuristics.

The implementation of the heuristics and the following

evaluation is done with the product configurator Merlin
CPQ by the CAS Software AG. Merlin has a specialized
solving process of incremental problems from interac-
tive configuration. Compared to a typical SAT solver,
this configurator also supports multiple different formula
terms as well as arithmetic expressions.

We evaluate the heuristics with respect to their exe-
cution time and the decision count on several product
configuration benchmarks and specifically focus our ef-
forts on speeding up the more complex to solve problems
to enable fluid and user-friendly configuration of the de-
sired product, even in these taxing cases. Experimental
results show that the performance of the especially ex-
pensive benchmarks is roughly doubled by the best of
the presented branching heuristics.

Interactive product configuration is a unique domain,
so general-purpose heuristics do not necessarily achieve
the best performance here. In this paper, we intro-
duce new branching heuristics that achieve better perfor-
mance in the domain of interactive product configuration
than the well-known top dogs for more general-purpose
benchmarks. It remains to be seen, how the heuristics
evaluated in this paper behave in other benchmark do-
mains.

1.3. Related Work
Most modern satisfiability solvers are based on the highly
influential foundation of Davis and Putnam [8] and
the shortly following DPLL algorithm [9]. Advance-
ments were made regarding decision heuristics, efficient
data structures [10], clause learning [11, 12], and search
restarts [13, 14]. The effectiveness of this method caught
interest in several domains taking advantage of the strong
performance of SAT solvers, especially after multiple
strong improvements around the turn of the last cen-
tury. Probably the two largest domains using SAT are
automated planning and scheduling [15, 16] and formal
verification [17, 18].

Reductions to SAT are also well known in the context
of product configuration [3]. Sinz, Kaiser and Küchlin
show different methods in [19, 4] that can be deployed for
configuration and [5] demonstrates how SAT solvers are
able to be used for an interactive configuration process.

The most dominant decision heuristic in SAT solving
of the last century is probably Dynamic Largest Indi-
vidual Sum (DLIS) [20] found in GRASP, the algorithm
that revolutionized DPLL and gave birth to the new solv-
ing paradigm Conflict-driven Clause Learning (CDCL).
The predominant decision heuristic in CDCL solvers in
the last two decades has been Variable State Indepen-
dent Decaying Sum (VSIDS) which was first presented
in Chaff [10].

Nevertheless, decision heuristics for CDCL are a vi-
tal research area [21]. Application-specific specialized

52

heuristics are evaluated regularly [22, 23, 24]. Recently,
approaches based on reinforcement learning have been
successfully used to select heuristics dynamically [25, 26].

Efforts to develop specialized heuristics for product
configuration were made in [27] by applying graph analy-
sis to propositional formulas inMerlin CPQ. Nevertheless,
the resulting heuristic based on coreness is not adaptively
reacting to conflicts that will often appear in DPLL and
thus could not dethrone VSIDS, which still is Merlin’s
standard heuristic.

1.4. Overview
Chapter 2 presents the theoretical concepts and defini-
tions covering propositional logic as well as SAT and
MaxSAT solving in the context of incremental product
configuration. In Chapter 3, we explain the ideas and mo-
tivations behind the branching heuristics under consider-
ation. The implementation in Merlin CPQ is described in
Chapter 4. Subsequently, Chapter 5 presents the results
of our performance evaluation of the presented heuris-
tics. Lastly, we provide a summary and our perspective
on potential future work in Chapter 6.

2. Theoretical Preliminaries
This chapter is meant to give a brief introduction into
necessary preliminaries for our work, but this informa-
tion is not targeting to be an exhaustive treatise about
the field of SAT solving.

2.1. Propositional Logic
In propositional logic, we have two Boolean constants
to represent values of ”true” and ”false”. Propositional
formulas are built from Boolean variables and operators
such as negation, conjunction, and disjunction.

These operators are interpreted with respect to the
usual semantics, i.e., the negation of an argument is true
if and only if the argument is false, the conjunction of a
set of arguments is true if and only if all arguments are
true, and the disjunction of a set of arguments is false if
and only if all arguments are false.

A variable assignment maps all Boolean variables of
a formula to Boolean constants. The truth value of a
formula under a given assignment is determined by re-
placing the variables with Boolean constants accordingly
and by successively interpreting the truth value of all
sub-formulas according to the operator semantics.

2.1.1. Normal Forms and Clause Types

The most common appearance of SAT formulas is in
conjunctive normal form (CNF). A CNF formula is a con-
junction of clauses. Each clause itself is a disjunction of

one or more literals. A literal is either a Boolean variable
(positive literal) or the negation of a variable (negative
literal). In contrast to CNF formulas, a formula in dis-
junctive normal form (DNF) if it is a disjunction of terms,
where a term is a conjunction of literals.

The Merlin product configurator supports formulas
constructed as conjunctions of both types of normal
forms, CNF and DNF formulas, as well as at-most-one
(AMO) constraints over sets of literals. An AMO con-
straint evaluates to true if and only if at most one of its
literals is true. There are several ways to encode this
constraint in propositional logic but further details are
unimportant for this paper.

2.2. Propositional Satisfiability
The satisfiability (SAT) problem asks the question
whether it is possible to find a complete variable assign-
ment that interprets a given formula to true (satisfiable)
or declares this impossible (unsatisfiable). A SAT solver
can be used to answer such problem instances. We can ad-
ditionally call a propositional formula valid if it evaluates
to true for every possible assignment.

The easiest way to determine satisfiability is achieved
by creating a truth table for the whole formula and check
whether any resulting value is true. The issue is the effort
of this procedure, which grows exponentially with the
number of variables.

2.2.1. DPLL Algorithm

DPLL is an enhanced depth-first search algorithm. A
partial assignment is successively collected for a given
CNF formula by adding literals during its search proce-
dure. The assigned variables are then used to simplify
the original formula.

Central to DPLL is unit propagation. If the CNF con-
tains a unit clause (a clauses that consist of only a single
literal), then the clause’s literal is immediately used to
extend the current partial assignment. All further clauses
where this literal occurs can then be dropped from the
formula because they are satisfied by the assignment.
Furthermore, the negation of the literal is removed from
all clauses in which it occurs and we call clauses where
this happens ”touched” (this will be important later). The
propagation stops when no more unit clauses are present.

Afterwards, one of three states is reached. If no clause
remains, the instance is satisfiable and the algorithm
returns a satisfying assignment. If an empty clause
emerges, i.e., all literals in that clause are falsified, the in-
stance is unsatisfied under the current partial assignment.
This means that decisions have to be undone (backtrack-
ing) and if no decision can be undone the instance is
unsatisfiable. Otherwise, we need to heuristically pick
a decision variable which we use to extend the current

53

partial assignment. Two recursive calls have to be made
now; the variable is assigned true in one branch and false
in the other.

This algorithm covers all possible branches in the
worst case, which makes it sound and complete but also
not better than the naive approach regarding this aspect.
However, the performance on real world problems is com-
monly clearly superior to the worst-case performance
due to unit propagation and further techniques.

2.2.2. Clause Learning

A major improvement made to DPLL-based solvers
has been the concept of conflict-driven clause learning
(CDCL), first shown in the GRASP solver [11, 12] and then
advanced by Chaff [10]. It has been shown that CDCL p-
simulates general resolution which makes CDCL strictly
more powerful than classic DPLL [28]. In CDCL, each
time a decision leads to an empty clause, the conflicting
assignment is analyzed to derive a new clause that is
added to the formula. The idea behind that is to avoid
repeating mistakes across different similar branches in
the search. Additionally, conflict analysis can determine
a backtracking level for directly backtracking multiple
decision levels instead of one at a time. A slightly closer
look at this conflict analysis will be taken in the next
chapter, where we discuss heuristics that operate on the
implication graph that is used for conduction such a con-
flict analysis.

2.3. Propositional Optimization
The common formalism for describing propositional op-
timization problems is the weighted Maximum Satisfia-
bility Problem [29]. A MaxSAT instance consists of hard
clauses and soft clauses and associates a weight with
each soft clause. A solution for a MaxSAT instance is
characterized such that it satisfies all hard clauses and
the sum of weights of satisfied soft clauses is maximized.
In contrast, Minimum-Cost Satisfiability (MinCostSAT)
associates weights with every variable to define the cost
of an assignment. In that case, the target is to find a
solution of lowest possible cost. The reduction of Min-
CostSAT to MaxSAT is straight-forward through adding
the variables as negative literals in a soft unit clause with
a weight according to the variable’s cost.

Merlin CPQ uses such costs on the product’s properties
in the previous step (since we want to avoid overriding
preconfigured parts as much as possible) as well as for
the user wishes if they cannot all be realized together.
In order to achieve this goal, Merlin’s DPLL implemen-
tation supports best-first search, that prefers branches
of minimal cost. This search follows the branches that
cost the least. Should a branch appear that increases the
cost above the currently optimal path’s cost, then the

search is interrupted and always greedily continued at
another branch that sits on the path of minimal cost. A
relaxed version with a reduced memory consumption
is the beam search. Instead of potentially exploring all
promising branches, only a maximum number of the
cost-optimized children (defined by the beam width) are
considered.

3. Decision Heuristics
Solving SAT instances under the given optimization goals
is computationally hard. Nonetheless, DPLL in combina-
tion with good heuristics can often efficiently solve many
formulas that model real world problems. Thus we are
taking a look at several decision heuristics from SAT solv-
ing. In this chapter, we review and present well-known
and new heuristics that implemented and evaluated in
the context of product configuration in Merlin CPQ.

Important regarding possible heuristics for Merlin is
also that they have to pick their decision from a pre-
defined set of candidate literals. These candidates stem
from the unit propagation’s touched clauses. The touched
clauses unassigned literals are candidate literals if the
clauses are still unsatisfied when the heuristic is called.

3.1. Variable State Independent
Decaying Sum

Variable State Independent Decaying Sum (VSIDS) is one
of the most efficient decision heuristic for SAT solving
since over 20 years. The original idea arose for the solver
Chaff [10]. VSIDS was then refined and adjusted slightly
over the years, for example inMiniSat [30]. The common
idea behind the heuristic is that every variable maintains
a counter. The unassigned variable with the highest
counter value is chosen for the branching when the solv-
ing procedure requires a next decision. The counters are
maintained as follows:

• Initially, every counter starts with a score that
is typically set to zero. Alternatively, the initial
score could also be the amount of occurrences
of the respective variable in the propositional
formula.

• The counter is incremented each time the respec-
tive variable is involved in the reasons for a con-
flicting assignment. With Chaff the focus was
only on the learned clauses, MiniSat expanded
the involvement to all clauses that appeared dur-
ing conflict analysis.

• All counters are periodically decreased by a con-
stant factor after a certain amount of conflicts
occurred. This so called decaying is meant to
give higher priority to variables that appeared in
more recent conflicts.

54

3.2. Distance Heuristic
The distance heuristic pursues a promising approach
as described in [31]. This branching heuristic is based
on counters like VSIDS and also makes use of decaying.
However, the score increment dynamically takes into
account an estimate of how much a variables contributes
to the conflicting assignment under analysis. This is done
by taking into account the position of the variables in
the implication graph that is commonly used in CDCL
for analyzing the reasons for a conflicting assignment.

An implication graph is a directed acyclic graph. Each
node in the implication graph either represents a clause
that triggered an assignment during unit propagation
(including the empty clause which triggered the conflict
under analysis) or a decision literal. In the implication
graph, edges represent propagated, i.e. implied, literal as-
signments. Each edge is rooted in the node representing
the clause or decision that is the reason for the assign-
ment and ends in the node representing the clause in
which this assignment falsifies a literal. The creation
process starts by representing the conflicting clause with
a node and subsequently adding incoming edges for each
falsified literal, rooting them in nodes representing the
respective reasons for their assignment.

The authors hypothesize that the fewer clauses a vari-
able depends on during the conflict, the higher the prob-
ability that the variable contributes to a later conflict.
Unfortunately, realizing this dependence hypothesis ex-
actly would be too computationally intensive. The dis-
tance heuristic is an approximation to this idea, in that
it determines the number of vertices that are located on
the longest path in the implication graph from the node
representing the reason of a variable’s assignment to the
node representing the conflicting clause.

The distance heuristic scores literals differently de-
pending on their responsibility for the conflict in con-
trast to the constant increment of VSIDS. This heuristic
aims to be more precise because of the more elaborate
scoring, especially during the beginning of the search
where only few conflicts occurred and none of the deci-
sion heuristics is sufficiently initialized yet. However, the
authors of the distance heuristic point to the computa-
tional overhead of their heuristic as compared to VSIDS.
In their empirical evaluation, they found that it is bet-
ter to switch from the distance heuristic to VSIDS after
50,000 conflicts. This seems especially fitting for product
configuration because the focus on interactivity means
that the targeted problems are typically faster to solve
compared to some large SAT instances running several
minutes and resolving tens of thousands of conflicts.

3.3. Conflict Heuristic
While the previously described heuristics increase the
scores of variables that appear in reason clauses or
learned clauses, we thought that in our context we could
try something that is much simpler. The conflict heuristic
is our own variant of VSIDS, where we simply increase
the scores of variables in the conflicting clause. The
intuition behind this procedure is that such variable as-
signments should be fixed as quickly as possible, ideally
to satisfy as many unsatisfied clauses as possible.

3.4. Heuristics based on Pure Literals
Pure literals were already used in the original algorithm
of Davis and Putnam in the affirmative-negative rule [8].
After each unit propagation, the rule searches for liter-
als whose negated form does not occur in the formula
under the current partial assignment. Such literals can
be set to true without conflict, so that clauses containing
them can be eliminated from the formula. This proce-
dure was later called ”pure literal elimination”. However,
this has disappeared from most modern CDCL solvers
because the computational overhead involved is usually
not compensated by the benefits of this instance simplifi-
cation procedure. This is due to the advent of efficient
data structures for unit propagation which are commonly
used in modern SAT solvers.

Merlin uses different data structures for unit prop-
agation, primarily due to the additional requirements
imposed by incremental user interaction, which requires
the ability to correct assignments deterministically and
non-chronologically. But the non-chronological correc-
tion of assignments is also detrimental to the applicability
of the pure literal rule. At any point in time, a user could
select a property such that a previously pure literal is no
longer pure. This would not be possible in classical SAT
solving, where a pure literal appearing under a particular
variable assignment remains a pure literal at least for
all branches below it. However, assigning a pure literal
explicitly by a branching decision is a valid option.

3.4.1. Pure Literal Heuristic

A first idea for a decision heuristic that utilizes this con-
cept can thus try to select pure literals whenever possible
and thus add them to the partial truth assignment. If
there are no pure literals available, then the remaining
variables are handled afterwards with a different strategy.
In the basic variant this is done by a fixed initial ordering.

3.4.2. Pure Literal Phase

The approach of favoring pure literals can and should
though be combined with other heuristics as well, where
those heuristics proceed instead of the random ordering.

55

Additionally, preferring pure literals can be done in cer-
tain phases. So pure literals could only be preferred after
a certain amount of conflicts or decisions, up to a certain
amount, within a range, or by having alternating phases
of favoring pure literals and just the basic heuristic.

3.4.3. State Dependent Pure Literals

We try some modifications related to keeping pure liter-
als up-to-date during run time for potential improvement.
A heuristic can remember so-called ”almost” pure literals,
which we see as variables that are mostly present in one
polarity, while the other polarity is rare. For every al-
most pure literal, the configurator also stores the clauses
preventing the literal from being completely pure. If all
the clauses related to an almost pure literal are marked
deleted during unit propagation, then this literal is being
added to the set of pure literals. This would thus increase
the amount of available pure literals.

3.4.4. Pureness Variant

Pureness of literals is another variant of pure literals. The
amount of positive versus negative literals of each vari-
able determines a pureness percentage. Variables with
a balanced share of positive and negative appearances
lead to a low pureness, almost pure literals get a high
pureness percentage, and fully pure literals would be 100
percent. The decision heuristic then picks the literal with
highest pureness score. Again, different heuristics can
be used as combination, either as tie breaker or to set
multiple scores off against each other.

3.5. Clause-Based Heuristic
For the clause-based heuristic (CBH), all clauses are kept
in an ordered list and decision literals are picked from the
top-most unsatisfied clauses in that list according to [32].
To create an initial ordering of clauses, the priority of a
clause is calculated based on the number of occurrences
of the literals it contains. To increase the proximity of
clauses that have literals in common, the ordered list is
gradually populated by starting with the clause with the
highest priority and then first increasing the priorities of
all clauses that have literals in common with the clause
just added. This process is repeated until all clauses are
added to the list. The ordered list is then update on
each conflict by moving the conflicting clause and the
reason clauses to the front. For the decision heuristic to
select a literal from the top-most unsatified clauses, each
literal has additional counters to measure its contribution
to (recent) conflicts, while larger scores are preferred.
Further details can be found in [32].

4. Implementation
Merlin CPQ already contains implementations of VSIDS
and a few other heuristics. In this section we discuss im-
plementation details of VSIDS, CBH and CBH Simplified.

4.1. Variable State Independent Decaying
Sum

VSIDS is already part of Merlin and the default heuristic.
The concrete realization of VSIDS is quite different from
the ones used in off-the-shelf SAT solvers. One difference
is that Merlin initially selects variable’s based on their
individual occurrence counts in the formula. This is in
contrast to most implementations which initialize scores
with zero (cf. CaDiCaL [33], orMiniSat [30]) The variable
occurrence counts and the VSIDS score of a variable are
kept separately. The sum of both scores is then used to
determine the final score used with decisions.

During conflict analysis, the VSIDS scores are incre-
mented by a bump value which is initially set to 100. The
purpose of VSIDS decay is to make previously bumped
variables less important over time. In Merlin, this is real-
ized by increasing the bump value over time. Every 15
conflicts the bump value is increased by two percent.

4.2. Clause-Based Heuristic
An exact reimplementation of the clause-based heuristic
as it is described in [32] would not suitMerlin’s heuristics,
who have to make their decision based on the given set
of candidate literals. Therefore, we do not explicitly man-
age a global clause-list as it is done in the original CBH.
Only initially, a list based on all clauses is created with
the ordering described by the CBH authors. Hereby, we
go through the original set of all clauses and remember
for each unique literal, in which clauses it was contained.
Then we create a new list with every variable, which is
sorted regarding the variables’ score based on the coun-
ters of the variable’s two literals. The paper would now
put the clauses containing the highest scoring variable
into the clause list, however, we assign a priority to the
literals depending on their supposed position in this list
instead of explicitly storing the clause list for later usage.
So in the first step, the highest scoring variable and all
variables that share a clause with it receive priority -1.
Each variable has two additional local literal counters
which get increased for every occurrence of its respective
literal as part of a clause added to the clause list. There-
fore, we also increase this local score when setting the
priority. The priority is afterwards decreased by one for
the next bunch of clauses. This procedure now continues
until every variable was selected, while the local score is
always added to the variable’s score.

56

Updates due to a conflict can then be realized by cal-
culating the conflict responsible clauses. Each literal of
these clauses receives a new priority (starting at zero)
that is one higher than the previous highest priority. This
procedure is equal to moving clauses to the topmost po-
sition of a clause list. Additionally, these literals get a
bump to their conflict counter. The same then happens
to the actual conflict clause with the next priority value.

Choosing a literal can then be done by checking the
position of a literal via its priority. The ones with the
highest priority (which is equal to the topmost position
in a clause list) are preferred. Literals from the supposed
topmost clause will receive the same priority, thus the
best literal is further selected depending on a variable’s
counters that get bumped for conflicts. The official clause-
based heuristic seems a bit over-engineered because it
keeps counters that get only increased during a conflict
and ones that additionally decay periodically. This decay
seems of questionable importance since we already move
literals that occur in recent conflicts to the top. Thus we
do drop this second counter in our implementation.

CBH also operates rather complex in regard to the
different counters for the variables because for every
comparison of two variables, several counters need to be
added and multiplied together for each of the variables.
This may cause unnecessary overhead. The formulas
that are used to combine the counters of a positive and
negative literal into a variable’s counter are the main
reason behind CBH’s need for this dynamic calculation.
In all these formulas, the positive and negative literal get
added to three times the minimum of the two literals.
The reason behind this last term is to punish variables
where just one of its literals is important, kind of like the
inverse of pureness. But the CBH authors do not spec-
ify how strong its impact on the heuristics performance
is. So we create a simplified clause-based heuristic re-
garding the scoring functions by removing the minimum
component. Consequently, we also drop the distinction
between positive and negative literals in regard to the
score and directly add them up. This means we explic-
itly combine values from a positive and negative literal
pair into one variable count, since the distinction will be
unimportant for our simplified heuristic. As a welcome
side effect, this combination also reduces the number of
individual counters that need to be stored.

5. Evaluation
The evaluation of the heuristics is done on several prob-
lems from three rule sets in Merlin CPQ. These rule sets
are based on the use cases of customers who use Merlin
for product configuration. Our testset contains a total
of 241 individual benchmarks across 85 methods of cus-
tomizing trucks. Each test translates to one user wish

0

500

1000

1500

2000 CBH simplified

CBH

Conflict with pure literal phase

VSIDS

[steps]

Figure 1: Evaluation with respect to decision count.

and a method with multiple tests translates to a series
of user requests. The most important statistics of the
formulas used in testing are as follows: 28000 variables,
127000 clauses, 5000 other constraints.

The performance metrics we consider for the problems
in this evaluation are the execution time, averaged over
three runs, and the sum of the amount of contradictions
that were encountered plus the number of branches that
were taken. The number of branches taken due to deci-
sions is a good indicator of the heuristic’s effectiveness.
Contradictions happen less often, ideally a few hundreds
for the most elaborate methods and at most around five
to ten percent the amount of branches. Therefore we
included it as a small contribution on defining the effec-
tiveness of the decisions selected. Both numbers should
be as low as possible and the sum of them is called ”steps”
in the following for simplicity. Their advantage is that the
amount of contradictions and branches is deterministic
in every run and hardware agnostic. The only down-
side is that potential time-consuming calculations of a
heuristic remain hidden when just looking at the step
count. Therefore we also measure the concrete execution
time (in milliseconds) for certain comparisons where we
expect overheads from parts of a heuristic.

Every metric is always plotted per test method. Cactus
plots – typically seen at SAT and SMT competitions – are
used whenever more than two heuristics are compared.
Here, the methods are ordered by importance for each
heuristic element displayed in the graph. The top and
right borders represent the timeout limit.

All measurements are performed on an Intel Core i7-
4710MQ CPU at 2.5 GHz with 16 GB of RAM under Win-
dows 10, version 21H1. The Merlin CPQ version in use is
the state of the master branch on 9. December 2021 and
running JDK 11.0.13.8.

In Figure 1 we can see that the quality of the literals
chosen by CBH are rather good, meaning that it takes
just a few decisions to finish the algorithm for most tests

57

0

500

1000

1500

2000

2500

3000

3500

4000

CBH simplified

CBH

Conflict with pure literal phase

VSIDS

[ms]

Figure 2: Evaluation with respect to execution time.

– typically even less than the pure literal modified VSIDS
variants. However, looking at Figure 2 we see that the
complicated summation used by CBH comes at a huge
penalty for the execution time. The modified and simpli-
fied alternative eliminates this issue.

The CBH simplified heuristic works as intended. It
keeps the strength of CBH’s good decision making while
maintaining to reach this conclusion quickly and without
too much overhead. The initial priority should also be
calculated more efficiently. So the execution time across
the whole of rule set 1 is therefore always competitive
and often even faster than the best VSIDS variants.

6. Conclusion
We presented and implemented several heuristics and
tweaks that were able to improve the decision making
of Merlin CPQ. The largest tests from an industrially
used rule set could be significantly improved by an op-
timized version of the clause-based heuristic. Our idea
of a branching heuristic that specializes on the variables
causing conflicts and utilized pure literals as preference
also performed almost as strong.

In a configurator, the initial weighting of variables is
substantial for the performance. The main conclusion for
a product configuration heuristic is the significance of
selecting interrelated variables. There are several ways a
configurator can group them together and take advantage
of them. Keeping them united according to their occur-
rence in clauses is what worked best for our benchmarks.
Other groupings are possible according to concepts like
pure literals, the types of literals and their clause type
they are contained in, or their appearance in the start
configuration. The aim is to offer a few good heuristics to
the people who design the rule sets that are then brought
to users who can configure their product. The design-
ers typically test several heuristics with their specific

environment and are then able to choose the one that
performs best for them.

There are still many promising heuristics that can be
tested in the field of product configuration, as well as
countless combinations and alternations. The currently
popular Learning Rate Branching (LRB) [34] based on
reinforcement learning is a prime candidate. However,
it is important to consider the limitations of the product
configurator’s structure. Some information might not
be directly accessible to the decision heuristic and only
realizable with major changes to the whole architecture.
Ideas that contain parts which are inefficient to calculate
might need to be changed to perform as desired. So a
heuristic has to be adopted to the system it is used in,
otherwise the configuration system would be in certain
aspects designed around the decision heuristic.

References
[1] S. Davis, Future Perfect, Basic Books, 1987.
[2] B. Pine, J. Pine, S. Davis, H. B. Press, Mass Cus-

tomization: The New Frontier in Business Compe-
tition, Harvard Business School Press, 1993.

[3] D. Sabin, R. Weigel, Product configuration frame-
works - a survey, IEEE Intell. Syst. 13 (1998) 42–49.

[4] C. Sinz, A. Kaiser, W. Küchlin, Formal methods for
the validation of automotive product configuration
data, Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 17 (2003) 75 – 97.

[5] M. Janota, Do sat solvers make good configurators?,
in: SPLC, 2008.

[6] M. D. Davis, G. Logemann, D. W. Loveland, A
machine program for theorem-proving, Commun.
ACM 5 (1962) 394–397.

[7] H. Katebi, K. A. Sakallah, J. Marques-Silva, Empiri-
cal study of the anatomy of modern sat solvers, in:
SAT, 2011.

[8] M. D. Davis, H. Putnam, A computing procedure
for quantification theory, J. ACM 7 (1960) 201–215.

[9] D. W. Loveland, A. Sabharwal, B. Selman, Dpll: The
core of modern satisfiability solvers, in: Martin
Davis on Computability, Computational Logic, and
Mathematical Foundations, 2016.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
S. Malik, Chaff: engineering an efficient sat solver,
Proceedings of the 38th Design Automation Con-
ference (IEEE Cat. No.01CH37232) (2001) 530–535.

[11] J. Marques-Silva, K. A. Sakallah, Grasp-a new
search algorithm for satisfiability, Proceedings of
International Conference on Computer Aided De-
sign (1996) 220–227.

[12] J. Marques-Silva, K. A. Sakallah, Grasp: A search al-
gorithm for propositional satisfiability, IEEE Trans.
Computers 48 (1999) 506–521.

58

[13] G. Audemard, L. Simon, Refining restarts strategies
for sat and unsat, in: CP, 2012.

[14] A. Biere, A. Fröhlich, Evaluating cdcl restart
schemes, in: POS@SAT, 2018.

[15] H. A. Kautz, B. Selman, Planning as satisfiability,
in: ECAI, 1992.

[16] H. A. Kautz, B. Selman, Pushing the envelope: Plan-
ning, propositional logic and stochastic search, in:
AAAI/IAAI, Vol. 2, 1996.

[17] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic
model checking without bdds, in: TACAS, 1999.

[18] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman,
Y. Zhu, Bounded model checking, Adv. Comput. 58
(2003) 117–148.

[19] C. Sinz, A. Kaiser, W. Küchlin, Detection of inconsis-
tencies in complex product configuration data using
extended propositional sat-checking, in: FLAIRS
Conference, 2001.

[20] J. Marques-Silva, The impact of branching heuris-
tics in propositional satisfiability algorithms, in:
EPIA, 1999.

[21] A. Biere, A. Fröhlich, Evaluating cdcl variable scor-
ing schemes, in: SAT, 2015.

[22] J. Rintanen, Planning as satisfiability: Heuristics,
Artif. Intell. 193 (2012) 45–86.

[23] M. Iser, M. Taghdiri, C. Sinz, Optimizing minisat
variable orderings for the relational model finder
kodkod - (poster presentation), in: A. Cimatti, R. Se-
bastiani (Eds.), Theory and Applications of Satisfia-
bility Testing - SAT 2012 - 15th International Con-
ference, Trento, Italy, June 17-20, 2012. Proceedings,
volume 7317 of Lecture Notes in Computer Science,
Springer, 2012, pp. 483–484.

[24] P. Beame, H. A. Kautz, A. Sabharwal, Towards un-
derstanding and harnessing the potential of clause
learning, CoRR abs/1107.0044 (2011).

[25] M. S. Cherif, D. Habet, C. Terrioux, Combining
VSIDS and CHB using restarts in SAT, in: L. D.
Michel (Ed.), 27th International Conference on Prin-
ciples and Practice of Constraint Programming, CP
2021, Montpellier, France (Virtual Conference), Oc-
tober 25-29, 2021, volume 210 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
pp. 20:1–20:19.

[26] D. Speck, A. Biedenkapp, F. Hutter, R. Mattmüller,
M. Lindauer, Learning heuristic selection with dy-
namic algorithm configuration, in: Proceedings of
the International Conference on Automated Plan-
ning and Scheduling, volume 31, 2021, pp. 597–605.

[27] S. Haug, Graphentheoretische optimierung der sat-
berechnung im anwendungsfall produktkonfigura-
tion, 2021.

[28] K. Pipatsrisawat, A. Darwiche, On the power of
clause-learning SAT solvers as resolution engines,
Artif. Intell. 175 (2011) 512–525.

[29] C. M. Li, F. Manyà, Maxsat, hard and soft con-
straints, in: Handbook of Satisfiability, 2021.

[30] N. Sörensson, N. Eén, Minisat v1.13 - a sat solver
with conflict-clause minimization, 2005.

[31] F. Xiao, C. Li, M. Luo, F. Manyà, Z. Lü, Y. Li, A
branching heuristic for sat solvers based on com-
plete implication graphs, Science China Informa-
tion Sciences 62 (2017) 1–13.

[32] N. Dershowitz, Z. Hanna, A. Nadel, A clause-based
heuristic for sat solvers, in: SAT, 2005.

[33] A. Biere, K. Fazekas, M. Fleury, M. Heisinger, CaDi-
CaL, Kissat, Paracooba, Plingeling and Treengeling
entering the SAT Competition 2020, in: T. Balyo,
N. Froleyks, M. Heule, M. Iser, M. Järvisalo, M. Suda
(Eds.), Proc. of SAT Competition 2020 – Solver and
Benchmark Descriptions, volume B-2020-1 of De-
partment of Computer Science Report Series B, Uni-
versity of Helsinki, 2020, pp. 51–53.

[34] J. H. Liang, V. Ganesh, P. Poupart, K. Czarnecki,
Learning rate based branching heuristic for sat
solvers, in: SAT, 2016.

59

Identifying Potential Applications of Service Configuration
Systems in a Logistics Company

Erika M. Strøm 1, Tine M. Münsberg 1 and Lars Hvam 1

1 Technical University of Denmark, Koppels Allé 404, 2800 Kgs. Lyngby, Denmark

Abstract
The logistics industry is challenged by the demand for customized services. This challenge is especially
apparent to third-party logistics (3PL) companies offering warehousing services. These services include
inbound, storage, and outbound logistics along with value-added services (VAS) based on client
requirements. 3PL companies must deliver customized services to a wide range of clients while
remaining efficient and competitive. Product configuration systems (PCS) have shown to play a key role
in providing customized products efficiently. However, literature on the application of configuration
systems to services is limited. This paper investigates the potential applications of a service configuration
system (SCS) in a logistics company offering customized warehousing services. The aim of this paper is
to identify potential applications of a configuration system to a company offering a large variety of
services. Modularization of services and applications of configuration systems are shortly investigated
and a framework to identify possible applications of PCS is adjusted and applied to services. The
framework is applied to a 3PL company to identify potential applications of SCS and to assess the
difference between application of configuration systems to products and services. The study uses
qualitative data collected in interviews from the case company. The identified applications provide a
basis for further scoping of configuration projects in the logistics company.

Keywords 1
Configuration Systems, Services, Logistics Companies, Third-Party Logistics (3PL), Applications

1. Introduction

Third-party logistics (3PL) companies operate in a highly
dynamic and competitive environment [1–3]. These
companies manage logistics operations for a wide range
of clients from different industries [2]. The warehousing
segment manages multi-client warehouses with
concurrent logistics operations for different clients [1, 4].
These operations include inbound, storage, and outbound
logistics along with value-added services (VAS) [1, 5].
VAS are activities that go beyond the basic logistics
operations and add value to the product. VAS are
customized to the individual client and encompass a wide
range of services, such as labelling [3] or returns
handling. Logistics companies can achieve higher profits
from providing VAS as the profit margin on simply
moving and storing goods is minimal. VAS also enable
logistics companies to build closer relationships with
clients and differentiate themselves from the competition
[3]. The ability to provide VAS plays an important role in
gaining a competitive advantage. However, the high level
of customization generates several challenges such as
complex and time-consuming specification processes for
new clients.

ConfWS’23: 25th International Workshop on Configuration, Sep
06--07, 2023, Málaga, Spain

EMAIL: emst@dtu.dk (A. 1); time@dtu.dk (A. 2); lahv@dtu.dk

(A. 3)
ORCID: 0000-0002-7123-2832 (A. 1); 0000-0001-8924-8026 (A.

2); 0000-0002-7617-2971 (A. 3)

©️ 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

The challenges associated with customized services
are similar to those of customized products. The concept
of mass customization describes the delivery of
customized products using mass production techniques
to achieve similar lead time, prices, and quality to mass
produced products [6]. Product configuration systems
(PCS) have shown to be key drivers when enabling mass
customization of products. PCS support the development
of specifications for customized products [6, 7]. This
process includes the activities related to gathering client
information, configuring products, and generating
product specifications [6]. Case studies have shown the
implementation of PCS to reduce man-hours and lead-
time related to preparing quotations along with reduced
errors in the specification process [6–9].

The development and implementation of
configuration systems for products is described in
numerous literature [6, 7, 9]. However, limited literature
describes configuration systems for services. This poses
the question of whether configuration systems can be
applied to logistics services to yield similar benefits as
with products. The logistics services described in this
paper have an undefined solution space as the services
can be configured in almost infinite combinations to meet
the individual clients’ needs. Parallels can be drawn to
engineer-to-order (ETO) companies with similar

60

undefined solution space and complex processes [6, 10].
Due to this complexity, multiple configurators or PCS are
often required to support the specification process in
ETO companies and the implementation process is
gradual [11]. Kristjansdottir et al. [11] describe a need for
identifying and prioritizing PCS projects before initiating
development of PCS in ETO companies. This may also
apply to logistics services.

This paper aims to contribute to literature on
configuration systems for services and provide a
framework for identifying potential applications of
service configuration systems (SCS). The framework is
based on a framework for ETO companies developed by
Kristjansdottir et al. [11] and adjusted to services based
on the studied literature. The framework is applied to a
case company offering a wide range of logistics services.

The paper is structured as follows: Section 2
describes the literature within services and configuration
systems and Section 3 explains the research method used
in this study. Section 4 describes the adjusted framework
for services and Section 5 describes a case study of a 3PL
company. The framework and case study are discussed
and concluded upon in Section 6 along with
considerations for future research.

2. Literature review

The literature review describes existing literature within
modularization of services and application of
configuration systems. Previous application of
configuration systems to services is described and the
research gap is identified.

2.1. Modularization of services

Modularization and the use of modules is closely
related to product configuration [6, 12]. Modularity and
product platforms enable companies to efficiently
develop and produce products to meet the needs of
different market segments [13]. Configuration systems
build products from modules according to a set of defined
rules and constraints [6]. Hvam et al. [6] describe one of
the problems associated with developing and
implementing configuration systems as a lack of clearly
defined product families and a lack of consensus
regarding which variants to offer or which market
segments to serve.

Research in the field of service modularity is limited
[14–17]. It is an apparent challenge for service companies
to define standard variants due to the nature of services
[16]. Christensen [18] defines services as intangible,
heterogenous, and perishable. Services are a co-creation
between the clients and the service industry and are
simultaneously produced and consumed [18].
Chervonnaya [19] describes customer behavior in
services as volatile and unpredictable. Several authors
argue that the concept of modularity could benefit
service-based companies [15, 16, 20]. Løkkegaard et al.
[16] argue that service companies should adopt the
concept of modularization to remain competitive in a
growing and dynamic sector.

Some authors have defined modularization in the
context of services. Pekkarinen and Ulkuniemi [14]
describe a modular service consisting of several service

modules. A service module is “one or several service
elements offering one service characteristic” [14] and a
service element is the smallest unit a service can be
divided into [14]. Tuunanen et al. [21] adopt a similar
definition of modular services and service modules.
Pekkarinen and Ulkuniemi [14] define three dimensions
of modularity with interfaces between each dimension:
(1) modularity in services, (2) modularity in processes,
and modularity in organization. Generally, there are
different interpretations of service interfaces [15, 16].

Pekkarinen and Ulkuniemi [14] and Løkkegaard et al.
[16] develop a conceptual model for service platforms.
The authors incorporate market segmentation in both
models as applied to products in the Power Tower by
Meyer and Lehnerd [13]. The authors argue that it is
important to understand the market in a platform context
due to the service industry’s dynamic environment and
the heterogonous nature of services.

2.2. Application of configuration
systems

Configurators are widely developed and used in the
manufacturing industry [7, 9, 11]. Numerous articles
describe strategies and approaches for developing
configuration systems for manufacturing companies [7,
9]. Kristjandottir et al. [11] argue that the existing
strategies do not provide guidelines for identifying
different applications of PCS. Kristjansdottir et al. [11]
develop a framework to identify possible applications of
PCS in ETO companies. The study aims to address the
challenges in identifying and prioritizing PCS projects
prior to the development process. The authors argue that
this step is particularly important in ETO companies
where multiple PCS support the specification processes.
Thus, there is a need for a structured approach to
breakdown and prioritize PCS projects. The framework is
divided into three overall steps: The first step identifies
potential PCS, the second step aligns the PCS with IT
systems, and the third step provides an overview of the
possible applications of PCS [11].

Literature describing approaches for applying
configuration systems to services is limited. Christensen
[18] applies a procedure for products by Hvam et al. [6]
to services and suggests an adapted approach to mass
customize service level agreements based on a service
variant master to map the service platform. Some of the
identified issues are defining the different types of
services which is important for the quality of the service
delivery and modularizing services with existing theories
for products [18]. Mueller et al. [9] suggest a five-step
approach for developing and implementing configurators
for commissioning services in ETO companies. The
application to a case study showed that ETO companies
can achieve a significant reduction in specification time
and resources for commissioning services. The authors
develop the approach based on strategies for PCS. The
first step aims to scope the commissioning configurator
project. The authors argue that it may be beneficial to
only include part of the commissioning service, but
guidelines on how to scope this are not described [9].

The literature does not describe how to identify
potential applications of configuration systems for
services. Thus, there is a need for a structured approach
to identify potential applications of SCS.

61

3. Research method

The research method is divided into two sections:
Development of the framework and validation of the
framework. The first section describes the development
of a framework to identify potential applications of
configuration systems to services based on the
framework for PCS. The second section explains the
process of validating the framework in a logistics
company.

3.1. Development of the framework

The development of the framework is based on the
literature within services and configuration systems and
knowledge about the case company. The literature
contributed to an understanding of (1) existing research
within modularization of services along with relevant
definitions and methods and (2) the importance of
identifying potential applications of PCS to complex
products and processes and existing case studies on the
development of configuration systems for services. The
framework was based on the framework for PCS by
Kristjansdottir et al. [11] and adjusted to services based
on literature and discussions within the research team.

3.2. Validation of the framework

The framework is validated through a case study in a
logistics company offering warehousing services. A case
study was chosen as it allows the study of phenomena in
its natural setting and generation of theory from real-
world observations [22].

The case company, also referred to as the company,
selected for the study has very limited experience with
configurators and no experience with large configuration
projects. Multiple stakeholders in the company have
expressed an interest in the application of configuration
systems and potential areas of application have been
proposed in previous projects. However, a structured
approach for identifying potential applications of
configuration systems in the company is lacking.

The framework was applied to the case company by
the researchers for validation. The data used in the case
study was collected from semi-structured interviews
with different stakeholders in the case company. The
framework and the generated results were presented to
managers from different business units and the feedback
was used to improve the framework for services.

4. Framework for identifying
potential applications of SCS

The proposed framework to identify applications of SCS
consists of three overall steps derived from
Kristjansdottir et al. [11]. The steps are as follows: (1)
Identifying potential SCS, (2) Aligning IT development,
and (3) Establishing an overview of SCS applications.
Figure 1 shows the framework. The individual steps and
sub-steps are described in the following sections.

Figure 1: The proposed framework to identify
applications of SCS.

4.1. Step 1: Identifying potential SCS

The aim of step 1 is to identify potential SCS. The step
is divided in three sub-steps: Step 1.1 defines the main
objectives for SCS, step 1.2 analyzes market segment, and
step 1.3 identifies application areas.

4.1.1. Step 1.1: Definition of
main objectives for SCS

The aim of this step is to identify the main objectives
for the SCS. Kristjansdottir et al. [11] describe how
objectives are important as they influence decision-
making when evaluating application areas in step 1.3 and
when evaluating the overview of the SCS applications in
step 3. This step also applies in the process of identifying
applications for SCS. The intangible and heterogenous
nature of services may emphasize objectives surrounding
standardization of specification processes, e.g. guidelines
or pricing strategies to ensure specification processes are
consistent and efficient. Likewise, there may be an
enhanced need for uncovering and understanding client
needs as services can be modified during operation which
requires adjustments to specifications along with
additional resources and potentially higher costs.

4.1.2. Step 1.2: Analysis of
market segments

The aim of this step is to analyze the market segments
served by the company. This step is added to the
framework because the company must assess which
market segments to serve and which services to include
in the configuration system. As described by Hvam et al.
[6], one of the problems associated with developing and
implementing a configuration system is the lack of
clarification and consensus regarding the variants to
include. Market segmentation is used to define and
differentiate service variants as described by Løkkegaard
et al. [16].

4.1.3. Step 1.3: Identification of
application areas

In step 1.3 potential application areas of the
configuration system are identified. These application
areas can be split into a commercial and a technical
configuration process as described by Forza and Salvador
[23]. The product is described with the specifications
determined by the customer in the commercial

62

configuration process, while each distinct product
variant is described in the technical configuration
process, e.g. with bill of materials (BOM). [23] The same
could apply to services.

The objectives identified in step 1.1 serve as
guidelines for application areas along with the list of
questions described by Kristjansdottir et al. [11].

4.2. Step 2: Aligning IT development

The aim of this step is to understand the current IT
systems supporting the specification processes and to
align with the configuration system [11]. The second step
is divided into three sub-steps: Step 2.1 identifies IT
systems to be replaced, step 2.2 combines the output
from different SCS, and step 2.3 identifies IT integrations.

4.2.1. Step 2.1: Identification of
IT systems to be replaced

In step 2.1 the IT systems or tools which will be
replaced by the SCS are identified. The purpose of
replacing IT systems is to standardize IT application in
the specification processes [11].

4.2.2. Step 2.2: Combining
output from different
configuration processes

The outputs from different configuration processes in
the company are combined to reduce redundancies.
Communication between departments is streamlined by
combining outputs and using the configuration system as
a platform for data [11].

4.2.3. Step 2.3: Identification of
IT integrations

Integration should be established to exchange
information between the configuration system and other
IT systems, such as ERP, CAD, and WMS. These IT systems
can be both internal and external to the company [11].

4.3. Step 3: Establishing an overview
of SCS applications

In step 3 an overview of SCS applications is created to
make an initial prioritization of SCS projects. The entire
specification process is mapped based on the analysis in
step 1 and 2 [11]. The overview is evaluated and the SCS
applications can be prioritized based on the analysis.

5. Case study: Application of the
framework in a logistics
company

The framework presented in the previous sections was
applied to a world-leading logistics company. The

company operates 3PL warehouses for a wide range of
clients and wishes to investigate how configuration
systems could support the specification processes for
new contracts. The services offered by the company
include inbound, storage, and outbound logistics along
with VAS. The warehouse flow is customized to each
client and the client can request virtually any VAS. The
number of offered services is almost infinite due to the
broad client base and high level of customization. The
company has not worked with modularization or
configuration systems for warehousing services. The
analysis is based on one Danish warehouse, but the
results are expected to be similar in other Danish
warehouses and warehouses in other European
countries. After the investigation of the potential the
company has started developing a prototype to test the
potential of using a configurator in the sales process.

5.1. Step 1: Identifying potential SCS

5.1.1. Step 1.1: Definition of
main objectives for SCS

This step provides an understanding of the objectives
for implementing SCS. The goal of implementing SCS is to
improve the integration of new clients. The following
objectives are formulated based on interviews with
stakeholders involved in the sales and integration
process of new clients and the warehouse operations
after implementation. The main objectives for
implementing SCS in the company are as follows:

• Provide a clear split between standard and non-
standard clients early in the sales process.
• Enhance understanding of the company’s
capabilities across departments, e.g. the type of
services the company can offer.
• Improve documentation in the sales process to
reduce errors and misunderstandings between
departments and between the company and the
client.
• Reduce lead time to generate proposals and
time to integrate new clients.
• Provide a clear pricing strategy.

5.1.2. Step 1.2: Analysis of
market segments

This step identifies the different market segments
served by the company. Generally, the services acquired
by all the clients consist of three main processes:
Inbound, storage, and outbound logistics. Each process
consists of several subprocesses, which are adjusted to
the individual client. The client can also acquire VAS,
which are services customized specifically to the client.
The order of the main processes is fixed, but VAS can be
added at any point in the flow. The solution space is
undefined as the combination of services and number of
VAS is close to infinite. Clients with very specific needs
are challenging to define and require highly customized
services.

Figure 2 shows the market segments, range of
services, and the potential application of SCS. The case
company has defined four types of clients in Denmark

63

based on industries. The customer segments have
different demands to the main processes based on the
type of goods handled. The level of customization
depends on the deviation from the main processes.
Clients in the highly customized segment often have very
specific or demanding needs and are of strategic
importance to the company. Highly standardized clients
have a simple warehouse flow with few specific needs.
This differentiation is defined by sales and project
managers in the company. The SCS is expected to be
applicable to most customer segments except for clients
requiring highly customized services, e.g. significant
modification to the three main processes and/or very
singular VAS.

The four client types are confidential as it is not in the
company's interest to disclose their clients.

Figure 2: Potential application of SCS within the market
segments.

5.1.3. Step 1.3: Identification of
application areas

This step identifies application areas of SCS based on
the objectives in step 1.1. The case company does not use
any configurators. The analysis showed that a
configurator could support the sales process and the
following integration processes. Figure 3 shows the
configuration processes that could be implemented and
the generated specifications. The commercial
configurator supports the sales department and
generates lists of services with cost estimates, offers with
price estimates, and drafts of contracts and standard
operating procedures (SOP). When the offer is accepted
by the client, information from the commercial
configurator is input to the technical configurator which
supports the integration processes of new clients. The
technical configurator generates flow diagrams and BOM
with input from project managers. The configuration
system shown in Figure 1 is moderately automated as the
human operators are not entirely replaced [23]. The
decision to have two successive configuration stages is
based on the complexity of warehousing services and the
degree of service knowledge of the clients.

Figure 3: SCS consisting of a commercial and technical
configuration process with input from two departments.

5.2. Step 2: Aligning IT development

5.2.1. Step 2.1: Identification of
IT systems to be replaced

This step identifies the IT systems to be replaced with
the implementation of SCS. The case company is currently
using two Excel models to calculate costs and prices of
services and two Word templates to generate contracts
and SOPs. Based on the analysis in step 1.3, the
commercial configurator can replace the Excel models
and the Word templates. The remaining documents
showed in Figure 1 are not supported by any specific IT
systems.

As previously stated, this case study is based on the
analysis of one warehouse. It was established in
interviews that other warehouses are using different
models and templates which are not identified in this
study.

5.2.2. Step 2.2: Combining
output from different
configuration processes

This step combines the outputs from different
configuration processes to show the information flow
and dependencies across departments. Two
configuration processes were identified in step 1.3. Thus,
only one dependency exists between the sales
department and the project managers.

5.2.3. Step 2.3: Identification of
IT integrations

This step identifies integrations between the SCS and
other IT systems in the company. Integration with other
IT systems will be a long-term process as the company is
currently not using any SCS. The configuration system
should be able to retrieve data from the company’s
warehouse management system (WMS). This data
includes key performance indicators from different
warehouses and services, e.g. capacities and efficiencies.
Furthermore, it would be beneficial to connect the SCS
with the company’s communication platform for clients,
the customer relationship management (CRM) system.
The communication platform is used to message the
client during the sales process and exchange documents.

64

5.3. Step 3: Overview of SCS

In the final step an overview of the SCS is created
based on step 1 and 2. The overview in Figure 4 shows
the identified SCS application areas, generated output,
and integration with other IT systems in the case
company.

Figure 4: Overview of the potential applications of a
configuration system in the case company.

The overview was used to communicate potential SCS

applications in the case company. Stakeholders had a
greater understanding of configuration systems and the
applicability to the company’s specification processes.
The overview was used to make an initial prioritization of
SCS projects which resulted in prioritizing the
commercial configurator and generating lists of services,
excluding cost estimates, for all customer segments.

The biggest challenge in the logistics service
company is that each warehouse operates as its own
company that develops a relationship with its clients, and
its primary goal is to fulfill its client’s needs. The level of
customization allowed will be a challenge, as the goal of
the configuration system is to standardize the different
services offered in the warehouses. However, solving this
by allowing customization in the commercial and
technical configurator allows the warehouses to
customize unique services when specific clients require
them. The next step is to map the service platform of the
logistics service company and investigate the level of
service customization that should be allowed in the
different warehouses with different customers both in
type of products and size.

6. Discussion & conclusion

Logistics companies are challenged by the demand for
highly customized services in 3PL warehouses. These
companies must continue to meet the clients’ needs to
stay competitive. However, the high level of
customization leads to several challenges when new
clients are integrated in the warehouses.

The literature describes numerous mass
customization strategies to manage similar challenges
associated with products. PCS have yielded several
benefits in the specification processes of customized
products. However, literature on the application of
configuration systems to services is limited as well as
literature on modularization of services. Parallels can be
drawn between logistics companies and ETO companies,
which have been subject to numerous studies on
implementation of PCS [7, 8, 11]. Both have an undefined

solution space and complex specification processes,
which have shown to require several configurators or
PCS to support the specification processes in ETO
companies. Hence, it is necessary to identify and
prioritize potential applications of configuration systems
prior to development.

This paper contributes to literature on configuration
systems for services and suggests a framework to identify
potential applications of configuration systems for
services. The framework provides a structured approach
to analyze and scope potential projects and communicate
SCS applications in organizations with no previous
experience with configuration systems.

The proposed framework was based on an existing
framework for ETO companies and literature within
modularization of services. The framework consists of
three steps: (1) Identifying potential SCS, (2) Aligning IT
development, and (3) Establishing an overview of SCS
applications. The main difference between the
framework for products and services is the addition of a
third sub-step to step 1. This step analyzes market
segments to determine the applicability of configuration
systems.

The framework was validated through a case study in
a case company. The case company is a logistics company
providing warehousing services to a wide range of
clients. The company has not worked with
modularization or configuration of warehousing services
previously. The framework facilitated an understanding
of how SCS could be applied to the case company. This
was especially advantageous in identifying a need for SCS
and communicating potential SCS projects to
stakeholders in the organization. The case study
indicated a need for analyzing market segments when
identifying potential SCS due to the diverse client base.
The company can use the analysis to determine future
SCS projects.

The framework does not assess modularity of
services in the company, which could be interesting in
future studies. Investigations of modularity in services is
relevant to standardize service offerings, define modules
[16], and implement configuration systems [6]. Further
analysis could also extend the framework and include a
data-driven market segmentation with performance
levels [13, 16] within the customer segments. This
market segmentation could determine the exact
segments and clients to include in the configuration
system.

The differences between a product configuration
system and a logistics service configuration system were
minimal when investigating the potential application of a
logistics service configuration system. However, mapping
and developing the logistics service modularization is
expected to be different as mapping processes that can
quickly be changed and adopted differs from mapping
parts of a product that will be handed over and cannot
change over time.

The framework has only been applied to one case
company providing logistics services. The framework
should be applied to more companies to validate the
approach with other types of services and different levels
of customization. Likewise, the case company has yet to
develop and implement the suggested SCS. The validity of
the framework and the suggested application areas can
be assessed once the company has developed and
implemented SCS. Future research into modularization of

65

services and service platforms can contribute to
identifying potential application areas of SCS.

Acknowledgements

The authors would like to acknowledge the case
company and the stakeholders that contributed to the
research.

References

[1] G. Baruffaldi, R. Accorsi, R. Manzini, and E. Ferrari,
“Warehousing process performance improvement:
a tailored framework for 3PL,” Business Process
Management Journal, vol. 26, no. 6, pp. 1619–1641,
Nov. 2020, doi: 10.1108/BPMJ-03-2019-0120.

[2] Y. Lin and S. Pekkarinen, “QFD-based modular
logistics service design,” Journal of Business and
Industrial Marketing, vol. 26, no. 5, pp. 344–356, Jun.
2011, doi: 10.1108/08858621111144406.

[3] L. Jum’a and M. E. Basheer, “Analysis of Warehouse
Value-Added Services Using Pareto as a Quality
Tool: A Case Study of Third-Party Logistics Service
Provider,” Adm Sci, vol. 13, no. 2, Feb. 2023, doi:
10.3390/admsci13020051.

[4] N. S. F. A. Rahman, N. H. Karim, R. M. Hanafiah, S. A.
Hamid, and A. Mohammed, “Decision analysis of
warehouse productivity performance indicators to
enhance logistics operational efficiency,”
International Journal of Productivity and
Performance Management, 2021, doi:
10.1108/IJPPM-06-2021-0373.

[5] M. Khakdaman, J. Rezaei, and L. Tavasszy, “On the
drivers of demand for innovative freight
transportation services,” IEEE Engineering
Management Review, pp. 1–27, 2022, doi:
10.1109/EMR.2022.3223313.

[6] L. Hvam, N. H. Mortensen, and J. Riis, Product
customization. Springer, 2008. doi: 10.1007/978-3-
540-71449-1.

[7] A. Haug, L. Hvam, and N. H. Mortensen, “Definition
and evaluation of product configurator
development strategies,” Comput Ind, vol. 63, no. 5,
pp. 471–481, Jun. 2012, doi:
10.1016/j.compind.2012.02.001.

[8] A. Haug, S. Shafiee, and L. Hvam, “The costs and
benefits of product configuration projects in
engineer-to-order companies,” Comput Ind, vol.
105, pp. 133–142, Feb. 2019, doi:
10.1016/j.compind.2018.11.005.

[9] G. O. Mueller, N. H. Mortensen, L. Hvam, A. Haug, and
J. Johansen, “An approach for the development and
implementation of commissioning service
configurators in engineer-to-order companies,”
Comput Ind, vol. 142, pp. 1–16, Nov. 2022, doi:
10.1016/j.compind.2022.103717.

[10] S. Shafiee, L. Hvam, and M. Bonev, “Scoping a
product configuration project for engineer-to-order
companies,” International Journal of Industrial
Engineering and Management, vol. 5, no. 4, pp. 207–
220, 2014, [Online]. Available:
www.ftn.uns.ac.rs/ijiem

[11] K. Kristjansdottir, S. Shafiee, and L. Hvam, “How to
identify possible applications of product

configuration systems in engineer-to-order
companies,” International Journal of Industrial
Engineering and Management, vol. 8, no. 3, pp. 157–
165, 2017, [Online]. Available: http://www.xx

[12] M. Hellström, R. Wikström, M. Gustafsson, and H.
Luotola, “The value of project execution services: a
problem and uncertainty perspective,” Construction
Management and Economics, vol. 34, no. 4–5, pp.
272–285, May 2016, doi:
10.1080/01446193.2016.1151062.

[13] M. H. Meyer and A. P. Lehnard, The power of product
platforms: building value and cost leadership. The
Free Press, 1997.

[14] S. Pekkarinen and P. Ulkuniemi, “Modularity in
developing business services by platform
approach,” The International Journal of Logistics
Management, vol. 19, no. 1, pp. 84–103, May 2008,
doi: 10.1108/09574090810872613.

[15] S. A. Brax, A. Bask, J. Hsuan, and C. Voss, “Service
modularity and architecture – an overview and
research agenda,” International Journal of
Operations and Production Management, vol. 37, no.
6, pp. 686–702, 2017, doi: 10.1108/IJOPM-03-
2017-0191.

[16] M. Løkkegaard, N. H. Mortensen, and T. C. McAloone,
“Towards a framework for modular service design
synthesis,” Res Eng Des, vol. 27, no. 3, pp. 237–249,
Jul. 2016, doi: 10.1007/s00163-016-0215-6.

[17] N. Iman, “Modularity matters: a critical review and
synthesis of service modularity,” International
Journal of Quality and Service Sciences, vol. 8, no. 1,
pp. 38–52, Mar. 2016, doi: 10.1108/IJQSS-05-2015-
0046.

[18] T. T. Christensen, “Konfigureringssystemer for
kundetilpassede serviceydelser med fokus på
industrielle servicekontrakter (SLAs),” 2009.

[19] O. Chervonnaya, “Customer role and skill
trajectories in services,” International Journal of
Service Industry Management, vol. 14, no. 3, pp. 347–
363, 2003, doi: 10.1108/09564230310478864.

[20] F. Ponsignon, P. Davies, A. Smart, and R. Maull, “An
in-depth case study of a modular service delivery
system in a logistics context,” International Journal
of Logistics Management, vol. 32, no. 3, pp. 872–897,
2021, doi: 10.1108/IJLM-07-2020-0295.

[21] T. Tuunanen, A. Bask, and H. Merisalo-Rantanen,
“Typology for modular service design: review of
literature,” International Journal of Service Science,
Management, Engineering, and Technology, vol. 3,
no. 3, pp. 99–112, 2012.

[22] C. Voss, N. Tsikriktsis, and M. Frohlich, “Case
research in operations management,” International
Journal of Operations and Production Management,
vol. 22, no. 2, pp. 195–219, 2002, doi:
10.1108/01443570210414329.

[23] C. Forza and F. Salvador, Product information
management for mass customization: connecting
customer, front-office and back-office for fast and
efficient customization. Palgrave Macmillan London,
2006. doi: 10.1057/9780230800922.

66

Multi-level configuration in smart governance systems
Salvador Muñoz-Hermoso1,3,*, David Benavides2,3 and Francisco J. Domínguez-Mayo2,3

1Provincial Informatics Company (INPRO), Seville Provincial Council, 32 Menéndez y Pelayo St, Seville, 41071, Spain
2Dept. of Computer Languages and Systems, University of Seville, Reina Mercedes St, 41012, Seville, Spain
3DiversoLab Computer Sience Laboratory, University of Seville, Reina Mercedes St, 41012, Seville, Spain

Abstract
Smart governance systems have different needs depending on the type of organization, which, together with their inherent
complexity, make them difficult to configure. However, we have not found solutions that facilitate the configuration of these
systems of great interest in the public sector. We propose a configurability solution compounds of a software framework-based
multi-level configuration architecture, and a feature model (FM) to represent the variability in a compact way through the
configuration of the different levels of the same software. Thus, the FM we present allows for obtaining a line of customized
services for different organizations. On a first level, the variability of the typical collaboration processes is managed, on a
second level the different collaboration models are handled, and on a third and fourth level the general smart governance
system is configured, and the one adapted to the specific needs of the organization. In this way, while facilitating configuration,
a high degree of accuracy is achieved regarding the specific and varying needs of the different stakeholders.

Keywords
Software Configurability, Feature Models, Software Reutilization, Smart Governance, E-Collaboration

1. Introduction
The configurability and variability management of infor-
mation systems is important, in that it enables software
products and services to be adapted to the needs of the
organization and its stakeholders [1].

In relation to e-collaboration technologies and systems,
they have an inherent complexity that is increased by the
fact that their requirements and needs vary according
to the application domain, and the type of organization
using them [2].

In the smart governance domain (related to the broader
field of e-government), the aim is to achieve quality pub-
lic services and smart management (of territories and
societies) through a collaborative government open to
citizen, business and professional collectives, maximizing
positive results with intensive use of Information Com-
munication and Technology (ICT) [3]. Collaboration is
therefore essential and particularly complex due to the
different (sometimes conflicting) interests of the actors
involved [4].

In the e-government exists a great variety of needs,
given that governance processes and public services in a

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
*Corresponding author.
$ samu31@dipusevilla.es (S. Muñoz-Hermoso); benavides@us.es
(D. Benavides); fjdominguez@us.es (F. J. Domínguez-Mayo)
� http://www.lsi.us.es/~dbc/ (D. Benavides); https://www.us.es/
trabaja-en-la-us/directorio/francisco-jose-dominguez-mayo
(F. J. Domínguez-Mayo)
� 0000-0002-8130-7869 (S. Muñoz-Hermoso); 0000-0002-8449-3273
(D. Benavides); 0000-0003-3502-8858 (F. J. Domínguez-Mayo)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

small municipality are not the same as those in a large
city, or governance in a regional or state administration
[5, 6]; thus it is essential to address the different needs
of citizens and governments, in terms of participation
and collaboration in public policies and services. Further-
more, smart governance involves multiple stakeholders
that enhances this complexity and the variety of unex-
pected and changing requirements, as this is still a recent
field with respect to its implementation. Hence, the de-
velopment of different tailor-made systems substantially
increases development and configuration costs.

It is therefore desirable, to improve the reusability and
address this great variety by managing the variability
(which can be changeable) of a unique software or, at
least, by reducing its variants and modifications. In such
a complex environment, so is its configuration, thus it is
also convenient to enhance the configurability of these
systems. Nevertheless, we have not found any solutions
in the literature review that addresses this variability
facilitating moreover its configurability.

Software Product Line Engineering (SPLE) and frame-
works software favor variability and reusability [6, 7, 8],
and consequently, the adaptation of the software devel-
oped to the specific needs of the organization.

In this context, we propose a service-oriented con-
figurability approach based on a multi-level software
framework-based configuration architecture to provide
a software product line (SPL); and a feature model (FM)
in the domain of smart governance. The FM allows rep-
resenting all possible configurations in a compact way
[8, 9], through the configuration of the different levels
of the software. So, the configuration architecture and
the FM model complement each other, to facilitate the
implementation of the variability of the services provided

67

by these systems.
This paper is structured as follows: Section 2 explores

the multi-level configuration architecture as part of the
solution. In Section 3, we introduce the proposed FM to
describe the configuration aspects of the smart gover-
nance system related to the presented architecture. In
Section 4, a review of related works is provided to high-
light the contribution of the proposed solution to previ-
ous research on SPL, e-government and e-collaboration
topics. Finally, Section 5 concludes the paper, summariz-
ing our main findings and observations, and proposing
some future research works.

2. Multi-level configuration
architecture

In the flat configurability approach, if a large variabil-
ity of complex systems needs to be covered, multiple
features and parameters must be considered, and it is
difficult to manage a software product line and product
customization [10].

In this section, we show a multi-level architecture pro-
posal to support a multi-level services configuration. This
approach favors configurability and reduces the complex-
ity of managing the associated variability [10, 11, 12].
Furthermore, it is service-oriented to facilitate the de-
velopment of Software-as-a-Service (SaaS) e-governance
systems.

Thus, the multi-level perspective enables division and
hierarchizes the configuration into different levels related
to modules or system parts, requirements groups, or ser-
vice models, facilitating the configuration, customization,
and reuse of the services.

2.1. Framework-based architecture
In order to achieve domain adaptability, we opted for
an architecture based on domain software frameworks;
they favor the reuse and implementation of solutions,
in particular in the public sector [7, 6, 5]. Thus, this
architecture also facilitates the implementation of the
configurability management of the proposed system.

To this end, we consider a first framework (E-
Collaboration Framework) with common characteristics
and functionalities for the collaboration of a group of
stakeholders on certain organizational assets (documents,
projects, policies, etc.). And a second framework, special-
ized from the first one, focused on the particular needs
and services of the smart governance domain (Smart
Governance Framework), such as citizen consultations,
drafting of regulations and policies, or participation in
smart city projects.

In this way, the configurability of services is addressed
through the various levels of the software frameworks

and the smart governance framework-based system; in
order to meet the specific needs of each organization.

2.2. Description
In Figure 1, in TOGAF-ArchiMate notation1, we show
a layered view with the most relevant artifacts of the
architecture involved in the configuration, in which the
different levels (gray) containing the different business
objects that store the configuration are observed. This
high-level modeling is suitable for representing in a vi-
sual and clear way both behavioral and static storage
artifacts. The shown architecture supports the proposed
FM described in the next section.

The business layer (yellow) is service-oriented and is
structured in two blocks; the one on the left supports
the configuration of the general e-collaboration software
framework, and the block on the right offers services to
manage the configuration of the adapted smart gover-
nance framework, as well as the system that is imple-
mented around it.

2.2.1. Purpose of the levels

Since the smart governance solution is based on general
domain software frameworks, it is necessary to consider
a first level (0) to establish the general configuration of
this reusable software in order to adapt it to the needs of
the specific smart governance solution to be developed.

On the other hand, smart governance is articulated
through participatory processes that are usually typified,
in some cases, on the basis of citizen participation regu-
lations. Therefore, it is appropriate to be able to define
and characterize these process models through a next
level (1) of configuration that will allow their adaptation
(both specific and general aspects) to the needs of the
organization. E.g. a certain process can be modeled for
the collaborative drafting of regulations, or another for
participatory budgeting. Given that there are different
types of public institutions and different smart gover-
nance policies and citizen participation regulations; it
is therefore desirable, to be able to model and configure
them at a new configuration level (2), so that they can
be reused and adapted for each institution. In addition,
these models usually involve certain types of collabora-
tive processes, hence their relationship with level 1. E.g.
a model could be established for small municipalities, or
for smart cities that have collaborative needs in urban
projects.

1TOGAF is an OpenGroup IEEE standard framework for develop-
ing enterprise architectures (https://www.opengroup.org/togaf).
ArchiMate is a (graphical and semantic) modeling language for
OpenGroup’s high-mid level enterprise architecture under the
TOGAF standard (https://www.opengroup.org/archimate-forum/
archimate-overview).

68

Figure 1: Architecture of the multi-level configuration of the frameworks and the system

These two levels favor dynamic variability, since en-
able a system in production that requires new needs, to
create new types of collaborative processes or new gov-
ernance models, that can be easily incorporated into the
smart governance services of a specific organization, or
a set of organizations using the same governance model.

While the above levels characterize the smart gover-
nance models with their associated processes in software
frameworks, we need a level (3) of configuration relative
to the specific system to be developed with the neces-
sary particularities for use by specific organizations that
adhere to the unique reusable system. E.g. a local ad-
ministration could develop a system for use by various
city councils. Furthermore, these levels make configura-
bility more efficient, since several organizations can be
customized at once, acting on levels 1 and 2 of the con-
figuration, or on level 3 for features that globally affect
the behavior of the entire system.

Based on the above, it follows that an additional level
of configuration (4) is desirable, so that each organization
can tailor the system to its requirements, both in terms
of general and specific characteristics of the governance
model and its processes. E.g. one municipality may want
its participatory processes to be binding, while another
may only want them to be consultative. Or regarding

specific characteristics such as the duration of certain
participatory processes, participation requirements and
restrictions, etc. In this way, it contributes to the preci-
sion and facility of the customization, since the config-
urations are inherited from top to bottom (through the
levels), it is possible to customize a particular entity, only
by modifying the differential features at level 4.

2.2.2. Level 0

Starting at configuration level 0 (general) and the block
on the left, the Collaboration Administration Service fa-
cilitates the adaptation of the e-collaboration software
framework through the setting of the general configu-
ration data (E-Collaboration Framework Configuration),
which helps to customize it in the application area. In
addition, in the right-hand block, customization is en-
hanced by means of the Smart Governance Administration
Services, for configuring specific features of the particu-
lar software framework in the smart governance domain
(object Smart Governance Framework Configuration).

2.2.3. Level 1

At level 1 (processes), the Processes Management Service in
the left-hand block allows the different types of collabora-

69

tive processes to be configured, storing the corresponding
information in the object E-Collaboration Process Config-
uration, which is part of the framework configuration.
In addition, in the right block, the Smart Governance Ad-
ministration Services provides a finer adjustment of the
processes, specifying a specific typology in the smart gov-
ernance field, the configuration of which is stored in the
object Smart Governance Process Configuration. In short,
this first level manages the variability of collaborative
processes, both in general and domain-specific.

2.2.4. Level 2

In order to achieve greater variability, similarly at level 2
(models), the same services of the respective frameworks
facilitate the creation of a product line related to the
e-collaboration and smart governance models (or orga-
nization types) that are established. The corresponding
configurations are stored respectively in the objects E-
Collaboration Model Configuration and Smart Governance
Model Configuration.

2.2.5. Level 3

Level 3 (system), allows obtaining a specific smart gov-
ernance type system, based on the framework with the
desired features, in relation to the collaboration models
to be supported, the types of processes, and other char-
acteristics that were already specified in the previous
configuration levels. The configuration of these features
is transferred to the system and other domain-specific
features are added and stored in the Smart Governance
System Configuration object. Thus, at this level, we se-
lect a product type and a customized SPL product that
provide a set of personalized smart governance services.

2.2.6. Level 4

The last level 4 (organizational), enables a configuration
adapted to the specific needs of each organization adher-
ing to the system. To this end, through the Smart Gover-
nance Administration Services, the system and framework
configurations are inherited to be customized respec-
tively in the objects organizational Smart Governance
System Configuration and Organizational Smart Gover-
nance Framework Configuration, which will make up the
complete and specific configuration of the organization’s
system.

2.3. Services realization
If we go down the business layer, in the left block, we can
see how the E-Collaboration Management functionality
(functional part of the e-collaboration framework) is the
one that performs the aforementioned services. Similarly,

on the right-hand side, the Smart Governance Manage-
ment is the functionality that realizes the administration
and configuration services of the system for smart gov-
ernance. In terms of reusability, it relies on the general
administration service of the e-collaboration framework.

Finally, in the information systems layer (light blue),
the application services that support the previous busi-
ness functionalities are included; E-Collaboration Man-
agement Application Service for the general configuration
of e-collaboration, and Smart Governance Management
Application Service for the specific configuration of smart
governance services, which also relies on the previous
one to enhance reuse.

3. Feature model
In this section, to complete our configurability solution,
we propose a FM (Figure 2) to represent the variability of
smart governance solutions with respect to the defined
configuration levels, which can be implemented based
on the configuration architecture of the previous section.

The FM considers the five configuration levels to ob-
tain a family of customized products down to the specific
system level of the organization.

First, we outline the key features common to the entire
line of smart governance systems and, second, those that
may vary for each specific system.

3.1. Common features
The system offers, on the one hand, common services
for e-collaboration in any type of organization and appli-
cation domain (E-Collaboration Common Services), and
on the other hand, in the context of the study, domain-
specific services (Smart Governance Services). These two
groups are mandatory in any configuration, because
these general services are necessary to accomplish any
process related to smart governance. Nevertheless, these
must be customized to adapt to the organization’s needs,
through their features and subgroups, some of them are
optional.

It is also mandatory to establish the e-collaboration
model to be used with its features, as well as the spe-
cific characteristics of typical collaborative processes
to be used in the model. The variable cardinality of
E-Collaboration Model and E-Collaboration Process, in-
creases configurability, by making it possible to define
a set of models, and for each of them, different types of
processes, covering levels 1 and 2 of configuration that
we discussed in the previous section; that is, different ser-
vices depending on the models and types of collaborative
processes that they implement. This multi-level approach
to FM, in which these feature trees can be considered as

70

Figure 2: Feature model for a smart governance system

separate but linked FMs, allows the high complexity of
these highly variable systems to be better managed [12].

In the particular application area, because of the need
for information from the environment, the system cannot
operate in isolation (being part of a software ecosystem),
and therefore the group System Integration is mandatory.
Within this group (in Figure 2 is collapsed), the feature
Organizational Systems & Services is mandatory, as the
system must interoperate with other existing informa-
tion systems in the organization (e.g. basic citizenship
data and identification services). However, we do not
consider a requirement the integration with other ex-
ternal services (External Global Services feature) such as
social networks or messaging services, although it would
provide more information to the system.

3.2. Variable features
In relation to e-collaboration common services, a multi-
entity system (Multientity) can be chosen, to be used
independently in different entities or organizations and
customized in each one of them. The features Legal Con-
trol and Ethic Control, will activate respectively the con-
trol mechanisms to favor the regulatory compliance of
the domain and the organization, and its ethical values.
To this end, the system must be able to model and store
them like rules in a knowledge database. So these charac-
teristics require, as we can see in Figure 2, the activation
of some technical features (Technical Capabilities), specifi-

cally those that offer support to knowledge management
(KM Support), to be able to handle the rules and their
inference.

In the field of smart governance, apart from the specific
services offered, governance can be extended to urban
processes and projects by activating the Urban Process
Services and Urban Project Services, as the latter is required
for collaboration in the former2.

The group Graphical User Interface (GUI) is not manda-
tory, as an existing external interface layer can be chosen.
If the system GUI is selected, a choice can be made be-
tween a web interface, a mobile interface, or both; for
increased interoperability and accessibility from any de-
vice.

These features act at levels 0, 3, and 4 for entity-level
customization of both the smart governance system and
the software frameworks on which it is based.

In relation to level 1, we highlight within the group
E-Collaboration Process two features that extend e-
collaboration, thus the Decision Service will enable
decision-making (DM) by the collaborators, which will
optionally enable an evaluation of the same with the
activation of the feature Assessment Service. For effec-
tive individual and collective decision-making, it is also
necessary to activate technical capabilities such as the
DM Support feature, whose group Technical Capabilities

2An urban process usually develops projects in the implementation
phase from ideas to proposed solutions [4].

71

we will see at the end of the section. In smart gover-
nance, these services will enable public policy evaluation
citizenship processes.

As for the optional features of the collaboration models
(E-Collaboration Model), there are some that, with their
activation, enhance the capabilities (and also the complex-
ity) of the model: Project-oriented enable e-collaboration
at project and project phase level (required if Urban
Project Services are activated). Networked-Processes al-
lows the creation of more complex collaborative pro-
cesses based on simpler ones, or to relate processes to
each other, forming a network to interoperate between
them.

The Multilevel feature extends collaboration to the dif-
ferent decision-making levels of the organization (strate-
gic, tactical, and operational), which combined with the
previous feature and the Multientity feature, supports
more complex and transversal processes in different or-
ganizations to solve common problems.

The Agile feature introduces an agile approach to col-
laboration through feedback between the different phases
of e-collaboration, and even with other networked col-
laborative processes. This feature, together with the pre-
vious one (Multilevel), in the field of smart governance,
facilitates dynamic collaboration throughout the public
policy cycle.

The Data-driven feature favors collaboration and
decision-making based on evidence or objective data,
requiring the activation of the technical capacity DA Sup-
port that we will see below. Enhanced by the influence of
the expertise and qualification of the collaborators (Qual-
ified feature), in the decision-making process, it allows
knowledge to be promoted in the final results of the de-
cisions. Both features contribute, in smart governance,
to a citizen-centric government.

As a final representative feature of the model, smart
assistance (Smart Assistance) is envisaged, in order to
support informed and effective decision-making. This
requires the activation of applied AI techniques (AI Sup-
port) or decision-making techniques (DM Support).

Finally, the group of optional features Technical Capa-
bilities (some of which are required by other models and
processes), enhances addressing complex collaboration
and decision-making problems by including technical ca-
pabilities [4] for data analysis (DA Support), knowledge
management from relevant data (KM Support), individ-
ual and group knowledge-based decision-making (DM
Support), and autonomous learning (enabled by Learning
Capability feature), which would enable the system to
autonomously configure itself to improve outcomes. It
can be seen that AI techniques (AI Support) are required
to support the above capabilities. The configuration of
these features applies to levels 0, 3, and 4, enabling cus-
tomization of technical capabilities at the system and
organization level.

The use of variable features and the multi-level ap-
proach will not only facilitate the configuration and the
customization, but also the standardization of governance
processes. For example, in a context where several city
councils need governance based on participatory con-
sultations and surveys, a E-Collaboration Model could be
defined with the desired features and with both types
of processes (E-Collaboration Process) with their specific
characteristics (Process Specific Features) already config-
ured.

In this way, this model would simply have to be acti-
vated in each organization; it would also be possible to
customize some of the features of the process or model
in a specific entity. In addition, new process-specific fea-
tures can be added to address dynamic variability more
accurately, due to stakeholders’ changing needs and tasks,
as these are mostly related to participatory processes.

It therefore, has clear advantages over the traditional
flat approach, as it would involve repeating the same
configuration work over and over again for each feature
and entity, and the reuse of the configuration would be
more consistent, or if some standardization of processes
is desired, which is desirable in public administration.

4. Related works
In the literature review, we have not found any articles
that specifically address the problem of configurability
in smart governance. Nor have we found proposals for
multi-level configurations in the more general domain
of e-government.

However, we have identified some e-government stud-
ies that although they do not focus on improving config-
urability, do address how to facilitate the development
and adaptation of these e-government systems to dif-
ferent needs through Software Product Line (SPL) and
domain frameworks [13, 6, 14]. And others like in [15]
propose using Feature Models (FM). This work is inter-
esting, because of its broad vision as ours, since proposes
a general model for e-governance systems; furthermore,
they establish a division by front-office or back-office
software, and another by applications typology: Gov-
ernment to Government (G2G), Government to Business
(G2B), or Government to Citizen (G2C).

In [6] further distinguish products for central or local
governments, which is appropriate as the latter offers
public services related to city government; quite different
from those offered by the state. Regarding our work,
adaptation to a local, regional, or central government,
could be accomplished through different models defined
in level 2 (models) of configuration.

In [5] they also propose a framework approach but
do not address configurability as a specific problem, but
focus more on facilitating the development of electronic

72

public services. SPL is also applied in some particular
use cases such as the one proposed in [16] for content
management systems (CMS).

In short, as in [13] is mentioned, there are few studies
that address variability and SPL in the e-government do-
main, so this is an area that needs to be explored further.

5. Conclusion and future works
The Feature-Model (FM) and the architecture that sup-
ports it, proposed in this work, facilitate multi-level
service-oriented configurability (at the level of the gen-
eral e-collaboration software framework and its pro-
cesses, the particularized framework in the domain, and
the smart governance system), product line configura-
bility (each model can be considered a product for a
particular type of smart governance or institution), and
multi-entity configurability (supporting different config-
urations for each organization). Therefore, from a single
software system, through reuse and configuration, it is
possible to obtain a significant dynamic variability of
services for e-collaboration and in particular for smart
governance. Moreover, the Learning Capability and AI
Support features will enable an autonomous configura-
tion to evolve the system towards configurations more
adapted to the organizations.

Concerning other related proposals, ours focuses on
the specific problem of configurability from a general per-
spective by providing several complementary methods
and techniques integrated into the solution: multi-level
configuration architecture, domain software frameworks,
SPL and FM; as well as TOGAF-Archimate as formal mod-
eling framework.

The preliminary results show that the configurability
architecture proposed in the present study contributes
to the general area of e-collaboration, and in particular
of smart governance, to facilitate the characterization
and configuration of these systems, also favoring their
reusability, and adaptability with respect to the particu-
lar and varying needs of the different stakeholders and
organizations.

Since we have not carried out a systematic review of
other possible configurability solutions in other areas, a
follow-up to this work could be to conduct such a study
to establish possible relations and synergies. Another
future work could be envisaged to further specify the
configuration architecture and the FM, aimed at develop-
ing software prototypes, either in general, in the specific
domain of smart governance, or another application area.

The development of a prototype for a given use case
(e.g. a governance system for a specific city council)
would help to validate our contribution. To this end,
quantitative performance metrics (e.g. related to the time
spent on configuration processes, its complexity, or ac-

curacy) could also be studied to empirically assess its ef-
ficiency and effectiveness compared to other approaches
and proposals to manage configurability.

Furthermore, the FM could also be specified at a higher
level of detail by developing feature sets, e.g. the Process
Specific Features, or exploring new features that may be
of interest. Tools to support the proposal would also be
of interest, e.g. to validate the consistency of the model
in relation to the features that are selected, as well as to
generate the corresponding software services from them.

Acknowledgments
This work was supported by the VII Own Plan research
aid from the University of Seville, FEDER/Ministry of Sci-
ence and Innovation/Junta de Andalucía/State Research
Agency with the following grants: Data-pl(PID2022-
138486OB-I00) , TASOVA PLUS research network
(RED2022-134337-T) and METAMORFOSIS (FEDER_US-
1381375)

References
[1] J. Bosch, Software variability management, in:

Proceedings - International Conference on Software
Engineering, volume 26, Elsevier B.V, 2004, pp. 720–
721. doi:10.1016/j.scico.2004.06.001.

[2] B. E. Munkvold, I. Zigurs, Integration of e-
collaboration technologies: Research opportuni-
ties and challenges, International Journal of e-
Collaboration (IJeC) 1 (2005) 1–24.

[3] C. Jiménez, Una aproximación al concepto de Gob-
ernanza Inteligente., Perspectiva (2013) 44–48.

[4] G. Tran Thi Hoang, L. Dupont, M. Camargo, Ap-
plication of Decision-Making Methods in Smart
City Projects: A Systematic Literature Review,
Smart Cities 2 (2019) 433–452. URL: https://
www.mdpi.com/2624-6511/2/3/27. doi:10.3390/
smartcities2030027.

[5] A. Ojo, T. Janowski, E. Estevez, A Com-
posite Domain Framework for Developing Elec-
tronic Public Services. (2007). URL: https://mural.
maynoothuniversity.ie/15885/.

[6] A. N. Fajar, I. M. Shofi, Reduced software com-
plexity for E-Government applications with ZEF
framework, Telkomnika (Telecommunication Com-
puting Electronics and Control) 15 (2017) 415–420.
doi:10.12928/TELKOMNIKA.v15i1.3195.

[7] I. Achour, L. Labed, R. Helali, H. B. Ghazela, A
Service Oriented Product Line Architecture for E-
Government, The 2011 International Conference
on e-Learning, e-Business, Enterprise Information
Systems, and e-Government, EEE 2011 (2011) 186 –
192.

73

[8] K. Pohl, G. Böckle, F. Van Der Linden, Software
product line engineering: Foundations, principles,
and techniques, Springer Berlin / Heidelberg, Berlin,
Heidelberg, 2005. doi:10.1007/3-540-28901-1.

[9] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated
analysis of feature models 20 years later: A liter-
ature review, in: Actas de las 16th Jornadas de
Ingenieria del Software y Bases de Datos, JISBD
2011, 2011, pp. 951–952.

[10] T. Clark, U. Frank, I. Reinhartz-Berger, A. Sturm,
A multi-level approach for supporting configura-
tions: A new perspective on software product line
engineering (2017).

[11] K. Czarnecki, S. Helsen, U. Eisenecker, Staged con-
figuration through specialization and multilevel
configuration of feature models, Software process:
improvement and practice 10 (2005) 143–169.

[12] M. O. Reiser, M. Weber, Multi-level feature trees: A
pragmatic approach to managing highly complex
product families, in: Requirements Engineering,
volume 12, Springer Nature, NEW YORK, 2007, pp.
57–75. doi:10.1007/s00766-007-0046-0.

[13] G. Cledou, L. S. Barbosa, Modeling families of
public licensing services: A case study, in: Pro-
ceedings - 2017 IEEE/ACM 5th International FME
Workshop on Formal Methods in Software Engi-
neering, FormaliSE 2017, IEEE, 2017, pp. 37–43.
doi:10.1109/FormaliSE.2017.8.

[14] I. Achour, L. Labed, R. Helali, H. B. Ghazela, A
Service Oriented Product Line Architecture for E-
Government, in: The 2011 International Conference
on e-Learning, e-Business, Enterprise Information
Systems, and e-Government, EEE 2011, The Steer-
ing Committee of The World Congress in Computer
Science, Computer Engineering and Applied Com-
puting (WorldComp), Athens, 2011, pp. 186 – 192.

[15] N. Debnath, L. Felice, G. Montejano, D. Riesco,
A feature model of E-government systems inte-
grated with formal specifications, Proceedings -
International Conference on Information Technol-
ogy: New Generations, ITNG 2008 (2008) 27–31.
doi:10.1109/ITNG.2008.104.

[16] V. M. A. D. Lima, R. M. Marcacini, M. H. P. Lima,
M. I. Cagnin, M. A. S. Turine, A generation environ-
ment for front-end layer in e-government content
management systems, in: Proceedings - 9th Latin
American Web Congress, LA-WEB 2014, IEEE, 2014,
pp. 119–123. doi:10.1109/LAWeb.2014.20.

74

Dynamic Aggregates in Expressive ASP Heuristics for
Configuration Problems
Richard Comploi-Taupe1,∗, Gerhard Friedrich2,∗ and Tilman Niestroj2,∗

1Siemens AG Österreich, Vienna, Austria
2Universität Klagenfurt, Klagenfurt, Austria

Abstract
First-order logic has been applied successfully to real-world configuration problems through Answer Set Programming (ASP).
To extend the application scope of ASP, lazy grounding and domain-specific heuristics were introduced. Domain-specific
heuristics support the problem solver in selecting choices aiming at minimizing the search effort. Dynamic heuristics exploit
the current state of the problem-solving process and assign priorities to choices. Depending on the domain, heuristics must
be formulated which reason about the properties of sets of atoms. E.g., how many components are connected to a particular
type of component, or what is the current sum/maximum/minimum of a physical quantity (power, voltage, current, etc.) of
a particular subconfiguration? For expressing such queries, ASP offers aggregates. The semantics of these aggregates are
defined w.r.t. a complete solution. However, in dynamic heuristics, the problem solver has to reason about partial solving states.
In this paper, we extend heuristics in ASP with dynamic aggregates and show their implementation as well as effectiveness.

Keywords
knowledge-based configuration, answer set programming, heuristics

1. Introduction
Answer Set Programming (ASP) [1] is a declarative
knowledge representation and reasoning framework
based on first-order logic that has been applied success-
fully to a variety of industrial problems [2] such as con-
figuration [3]. Current ASP solvers transform first-order
descriptions of problem instances into propositional logic
(called grounding) and apply a propositional problem
solver (e.g., backtracking search) to generate solutions.
However, applications manifested two issues with the
ground-and-solve approach. The first issue is the so-
called grounding bottleneck: Large problem instances
cannot be grounded by modern grounders like gringo [4]
in acceptable time and space. The second issue is that,
even if the problem can be grounded, computation of
answer sets might take considerable time, as indicated
by ASP competition reports [5].

Both issues were recently addressed. First, to over-
come the grounding bottleneck, lazy grounding ASP sys-
tems interleave grounding and solving to instantiate and
store only relevant parts of the ground program in mem-
ory. The second performance-related issue is tackled by
modern solvers using various techniques, among which
domain-specific heuristics play a central role.

The work in [6] extends existing approaches by (1) in-

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
∗Authors are listed in alphabetic order.
Envelope-Open richard.taupe@siemens.com (R. Comploi-Taupe);
gerhard.friedrich@aau.at (G. Friedrich); tilmanni@edu.aau.at
(T. Niestroj)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

troducing dynamic heuristics and (2) their exploitation in
a lazy-grounding ASP system. The ASP system extended
by this approach isAlpha [7], the most actively developed
lazy-grounding system available. Dynamic heuristics al-
low reasoning about the current problem-solving state
represented by a partial assignment of truth values to
some (but not all) atoms of a logical specification.

This reasoning may require the application of aggrega-
tion. E.g., during the configuration process of electronic
equipment, an effective heuristic for problem-solving can
say: Given the current state of problem-solving, select the
most power-hungry, currently unconnected electronic
board, and connect this board to the rack with minimal
power consumption (i.e., the rack for which the total
power consumption of all boards currently connected is
minimal).

However, state-of-the-art ASP aggregates are evalu-
ated only w.r.t. a complete assignment of truth values, i.e.,
only if every atom (proposition) is true or false, so that
their value cannot change during solving. For our rack
configuration example, this semantics implies that the
power consumption of a rack can only be determined if
the assignment of boards to a rack is final. Consequently,
ASP aggregates like sum cannot be employed in dynamic
heuristics to reason about the current search state where
board assignments to a rack are not completed.

In this paper, we introduce dynamic aggregates, which
are computed w.r.t. the current state of problem-solving.
Consequently, such aggregates can be exploited in dy-
namic heuristics to steer the reasoning process depending
on the current state of problem-solving.

The paper is organized as follows. In Section 2, we give
a brief introduction to ASP and lazy grounding. Section 3

75

provides a driving example and introduces dynamic ag-
gregates informally. In Section 4, we present the syntax
and semantics of dynamic aggregates. Section 5 shows
the implementation and integration of dynamic aggre-
gates using a query-driven approach. Finally, in Section 6,
we present the results of our evaluation.

2. Answer Set Programming
Answer Set Programming (ASP) [1] is an approach to
declarative programming. Instead of stating how to solve
a problem, the programmer formulates the problem as a
logic program specifying the search space and the prop-
erties of valid solutions. An ASP solver then finds models
(so-called answer sets) for this logic program, which cor-
respond to solutions for the original problem.

2.1. Syntax
ASP offers a rich input language, of which we introduce
only the core concepts needed in this paper. For a com-
prehensive definition of ASP’s syntax and semantics, we
refer to [8].

Let ⟨𝒱 , 𝒞 ,ℱ ,𝒫 ⟩ define a first-order language, where
𝒱 is a set of variable symbols, 𝒞 is a set of constant
symbols, ℱ is a set of function symbols, and 𝒫 is a set of
predicate symbols.

A classical atom is of the form 𝑝(𝑡1, … , 𝑡𝑛), where 𝑝 ∈ 𝒫
is a predicate symbol and 𝑡1, … , 𝑡𝑛 are terms. Each variable
𝑣 ∈ 𝒱 and each constant 𝑐 ∈ 𝒞 is a term. Furthermore,
for 𝑓 ∈ ℱ, 𝑓 (𝑡1, … , 𝑡𝑛) is a function term. ASP also allows
built-in atoms, such as equality or comparison predicates,
which take arithmetic terms as arguments, e.g., X∗∗2 > 1
where ∗∗ is the power operator.

An answer-set program 𝑃 is a finite set of rules of the
form

ℎ ← 𝑏1, … , 𝑏𝑚, not 𝑏𝑚+1, … , not 𝑏𝑛. ⟨1⟩

where ℎ and 𝑏1, … , 𝑏𝑛 are atoms and not is negation as
failure (a.k.a. default negation), which refers to the ab-
sence of information, i.e., an atom is assumed to be
false as long as it is not derived by some rule. A lit-
eral is either an atom 𝑎 or its negation not 𝑎. Given a
rule 𝑟 of the form ⟨1⟩, head(𝑟) = {ℎ} is called the head
of 𝑟, and body(𝑟) = {𝑏1, … , 𝑏𝑚, not 𝑏𝑚+1, … , not 𝑏𝑛} is
called the body of 𝑟. By body+(𝑟) = {𝑏1, … , 𝑏𝑚} and
body−(𝑟) = {𝑏𝑚+1, … , 𝑏𝑛} we denote the positive and neg-
ative atoms in the body of 𝑟, respectively. A rule 𝑟 where
head(𝑟) = ∅, e.g., ← b., is called constraint. A rule 𝑟
where body(𝑟) = ∅, e.g., h ← ., is called fact. In facts the
arrow can be omitted. A rule is ground if all its atoms are
variable-free. A ground program comprises only ground
rules.

2.2. Semantics
Given a program 𝑃, the Herbrand universe of 𝑃, denoted
by 𝑈𝑃, consists of all integers and of all ground terms con-
structible from constant symbols and function symbols
appearing in 𝑃. The Herbrand base of 𝑃, denoted by 𝐵𝑃,
is the set of all ground classical atoms that can be built
by combining predicates appearing in 𝑃 with terms from
𝑈𝑃 as arguments [8].

A substitution 𝜎 is a mapping from variables 𝒱 to ele-
ments of the Herbrand universe 𝑈𝑃 of a program 𝑃. Let
𝑂 be a rule, an atom, or a literal, then by 𝑂𝜎 we denote
a rule, atom, or literal obtained by replacing each vari-
able 𝑣 ∈ vars(𝑂) by 𝜎(𝑣). The function vars maps any
rule, atom, literal, or any other object containing vari-
ables to the set of variables it contains. For instance,
vars(a(X)) = {X} and for a rule 𝑟1 ∶ a(X) ← b(X,Y).,
vars(𝑟1) = {X,Y}.

As usual, we assume rules to be safe, which is the
case for a rule 𝑟 if vars(𝑟) ⊆ ⋃𝑎∈body+(𝑟) vars(𝑎), e.g., all
variables must occur in the positive atoms of the rule,
which allows the grounding process to substitute them
with constants.

The (ground) instantiation of a rule 𝑟 equals 𝑟𝜎 for some
substitution 𝜎, which maps all variables in 𝑟 to ground
terms. The (ground) instantiation grd(𝑃) of a program 𝑃
is the set of all possible instantiations of the rules in 𝑃 [8].
Function symbols may cause the Herbrand base and the
full grounding of a program to be infinite. By restricted
usage of function symbols, answer-set programs can be
designed in a way that reasoning is decidable.

An Herbrand interpretation for a program 𝑃 is a set of
ground classical atoms 𝐼 ⊆ 𝐵𝑃. A ground classical atom
𝑎 is true w.r.t. an interpretation 𝐼, denoted 𝐼 ⊧ 𝑎, iff 𝑎 ∈ 𝐼.
A ground literal not 𝑎 is true w.r.t. an interpretation 𝐼,
denoted 𝐼 ⊧ not 𝑎, iff 𝐼 ⊭ 𝑎. A ground rule 𝑟 is satisfied
w.r.t. 𝐼, denoted 𝐼 ⊧ 𝑟, if its head atom is true w.r.t. 𝐼
(ℎ ∈ head(𝑟) ∶ 𝐼 ⊧ ℎ) whenever all body literals are true
w.r.t. 𝐼 (∀𝑏 ∈ body(𝑟) ∶ 𝐼 ⊧ 𝑏). An interpretation 𝐼 is a
model of 𝑃, denoted 𝐼 ⊧ 𝑃, if 𝐼 ⊧ 𝑟 for all rules 𝑟 ∈ grd(𝑃).

Given a ground program 𝑃 and an interpretation 𝐼,
let 𝑃 𝐼 denote the transformed program obtained from 𝑃
by deleting rules in which a body literal is false w.r.t. 𝐼:
𝑃 𝐼 = {𝑟 ∣ 𝑟 ∈ 𝑃, ∀𝑏 ∈ body(𝑟) ∶ 𝐼 ⊧ 𝑏}.

An interpretation 𝐼 of a program 𝑃 is an answer set of 𝑃
if it is a subset-minimal model of grd(𝑃)𝐼, i.e., 𝐼 is a model
of grd(𝑃)𝐼 and there exists no 𝐼 ′ ⊊ 𝐼 that is a model of
grd(𝑃)𝐼.

2.3. Notation
In this section, we introduce some notation that will be
used later in the article.

An assignment 𝐴 over 𝐵𝑃 is a set of signed literals T 𝑎,
F 𝑎, or M 𝑎, where T 𝑎 and F 𝑎 express that an atom 𝑎

76

is true and false, respectively, and M 𝑎 indicates that 𝑎
“must-be-true”. M means that an atom must eventually
become true by derivation in a correct solution extending
the current partial assignment, but no derivation has yet
been found that would make the atom true. E.g., given
constraint ← not b. we know that atom b must be true
and has to eventually become true by derivation. Intu-
itively, T 𝑏 ∈ 𝐴 means that 𝑏 is true and justified, i.e.,
derived by a rule that fires under 𝐴, while M 𝑏 ∈ 𝐴 only
indicates that 𝑏 is true but potentially not derived. Let
𝐴𝑠 = {𝑎 ∣ 𝑠 𝑎 ∈ 𝐴} for 𝑠 ∈ {F,M,T} denote the set of atoms
occurring with a specific sign in assignment 𝐴. We as-
sume assignments to be consistent, i.e., no negative literal
may also occur positively (𝐴F ∩ (𝐴M ∪ 𝐴T) = ∅), and
every positive literal must also occur with must-be-true
(𝐴T ⊆ 𝐴M). The latter condition ensures that assign-
ments are monotonically growing (w.r.t. set inclusion) in
case an atom that was must-be-true becomes justified by
a rule deriving it and hence changes to true.

An assignment 𝐴 is complete if every atom in the Her-
brand base is assigned true or false (∀𝑎 ∈ 𝐵𝑃 ∶ 𝑎 ∈
𝐴F ∪ 𝐴T). An assignment that is not complete is par-
tial.

Many useful language constructs have been intro-
duced to extend the basic language of ASP defined in
Sections 2.1 and 2.2. We discuss such extensions only
briefly and refer to [8] and [1] for full details.

A cardinality atom is of the form
lb {𝑎1 ∶ 𝑙11 , … , 𝑙𝑚1 ; … ; 𝑎𝑛 ∶ 𝑙1𝑛 , … , 𝑙𝑚𝑛} ub,
where, for 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖 ∶ 𝑙1𝑖 , … , 𝑙𝑚𝑖 represents a con-

ditional literal in which 𝑎𝑖 (the head of the conditional
literal) is a classical atom and all 𝑙𝑗𝑖 are literals, and lb
and ub are integer terms indicating a lower and an upper
bound, respectively. If one or both of the bounds are not
given, their defaults are used, i.e., 0 for lb and∞ for ub. A
cardinality atom is satisfied if lb ≤ |𝐶| ≤ ub holds, where
𝐶 is the set of head atoms in the cardinality atom that are
satisfied together with their conditions (e.g., 𝑙1𝑖 , … , 𝑙𝑚𝑖 for
𝑎𝑖).

As an extension of cardinality atoms, ASP also sup-
ports aggregate atoms that apply aggregate functions
like count or sum to sets of literals. An aggregate atom is
satisfied if the value computed by the aggregate function
respects the given bounds, e.g., 1 = #sum{1 ∶ a; 2 ∶ b} is
satisfied if a but not b is true.

2.4. Lazy Grounding
Lazy grounding is an approach that interleaves the solv-
ing and grounding phases, such that computations are
guaranteed to yield all answer sets. The foundation for
lazy grounding is known as the computation sequence [9].
A computation sequence S = ⟨𝑆0, 𝑆1, … , 𝑆𝑛⟩ is a sequence
of partial assignments that is monotonically growing
(w.r.t. set inclusion). Every element 𝑆𝑖 of the sequence

represents the state of the computation at step 𝑖. The first
element of the sequence is empty (𝑆0 = ∅), and every
other element 𝑆𝑖 contains the signed literals that can be
derived from the preceding partial assignment 𝑆𝑖−1 in the
program 𝑃.

Since each element of a computation sequence is a
partial assignment containing signed literals, and the se-
quence is monotonically growing, each 𝑆𝑖 contains atoms
assigned T that will remain true in all extensions of 𝑆𝑖,
and atoms assigned F that will definitely remain false in
all extensions of 𝑆𝑖.

Computation sequences require a normal logic pro-
gram as input (i.e., rules of the form ⟨1⟩ without cardi-
nality atoms and aggregate atoms, cf. [9, 10, 7]). Hence
lazy grounding systems usually only accept normal logic
programs or, in the case of Alpha, rewrite enhanced ASP
constructs like aggregates into normal rules.

A rule 𝑟 is said to be applicable in 𝑆𝑖 if {T 𝑎 ∣ 𝑎 ∈
body+(𝑟)} ⊆ 𝑆𝑖 and {M 𝑎 ∣ 𝑎 ∈ body−(𝑟)} ∩ 𝑆𝑖 = ∅, i.e., if
the positive body is satisfied and 𝑆𝑖 does not contradict the
negative body. For every applicable rule 𝑟 in 𝑆𝑖 without
a negative body, the partial assignment 𝑆𝑖 is extended to
𝑆𝑖+1 by T head(𝑟).

Based on the fact that the computation sequence only
needs to know those ground rules that are applicable only
those rules are grounded, whose positive body holds in
the current partial assignment.

Each applicable rule 𝑟 in 𝑆𝑖 with a non-empty negative
body constitutes an active choice point. Given a set of
choice points for 𝑆𝑖 the problem solver has to decide
which rule to apply. Applying an applicable rule 𝑟 has
the consequence that 𝑆𝑖 is extended to 𝑆𝑖+1 by adding
T head(𝑟) and F 𝑎 for all 𝑎 ∈ body−(𝑟), i.e., all atoms of
the negative body are assumed to be false.

In the following example in 𝑆0, Rule 1 is the only ap-
plicable rule. Consequently, 𝑆1 = {M x(1),T x(1)}. In
𝑆1 Rules 2 and 3 are applicable. If the solver decides to
apply Rule 2 then M b(1), T b(1) and F c(1) are added to
assignment 𝑆2 and therefore Rule 3 is not applicable in
𝑆2.

x(1) ← . % Rule 1
b(1) ← x(1), not c(1). % guessing b Rule 2
c(1) ← x(1), not b(1). % guessing c Rule 3

Deciding which rule to apply is based on heuristics
which may be general, i.e., designed for every ASP pro-
gram [11], or they may be domain-specific, e.g., designed
for a specific problem [6].

3. Example
As an introductory example, consider the following ASP
program. The idea is that for every number i ∈ {1, … , n}
the solver can decide either to assert b(i) or c(i). As an

77

example we set 𝑛 = 400. Let Bs and Cs be all the 𝑏/1 and
𝑐/1 atoms in an answer set of the example program. We
require that any answer set must fulfill the constraint
((∑b(i)∈Bs i) − (∑c(i)∈Cs i))2 ≤ 1, e.g., the difference be-
tween these two sums must be at most 1. We call this
problem the Balanced Sum Problem (BSP). The example
program comprises a guessing part and a part where solu-
tions are checked. Moreover, we may specify initial facts
like b(200) and b(201). In the worst case, 2398 guesses are
possible. To avoid a high number of possible guesses, we
can formulate heuristics that aid the solver in performing
correct guesses such that backtracking is minimized.

x(1..400). % initializing values from 1 to 400.
% guessing
b(X) ← x(X), not c(X). % guessing b
c(X) ← x(X), not b(X). % guessing c
% initial imbalance
b(200). b(201).
% check solution
sumB(Sum) ← Sum = #sum{Y ∶ b(Y)}.
sumC(Sum) ← Sum = #sum{Y ∶ c(Y)}.
% constrain difference between sums
← sumB(SB), sumC(SC), (SB − SC)∗∗2 > 1.
% heuristics
#heuristic b(X) ∶ % b-heuristic

x(X), not c(X), S = #sum{Y ∶ c(Y)},
Weight = X, Level = S. [Weight@Level]

#heuristic c(X) ∶ % c-heuristic
x(X), not b(X), S = #sum{Y ∶ b(Y)},
Weight = X, Level = S. [Weight@Level]

As an example, let us consider an instantiated
version of a heuristic for the partial assignment
𝑆1 = {M b(200),T b(200), M b(201), T b(201),M x(1),
T x(1), … ,M x(400),T x(400)}, i.e., the partial assignment
comprising all initial facts which are true. For x(400) an
instance of the c-heuristic (including the evaluation of
the aggregate) is #heuristic c(400) ∶ x(400), not b(400),
401 = #sum{200, 201}, [400@401].

Heuristic directives assign a weight and a level to a
rule which derives an atom. In this instantiated heuristic
directive, the weight is 400, and the level is 401. All other
instantiated c-heuristics and b-heuristics have either a
lower level or lower weights in case of the same level. For
performing choices, guesses are preferred with higher
levels, and higher weights are prioritized among guesses
with the same level. Consequently, the solver will apply
a rule which asserts c(400).

The novel concept of this paper is that aggregates
in heuristic directives like #sum are evaluated w.r.t. the
current assignment. For the partial assignment 𝑆1, the
aggregate #sum{Y ∶ b(Y)} in the c-heuristic is evaluated as
#sum{200, 201} since 𝑆1 contains the atoms T b(200) and
T b(201). Applying the aggregate function #sum derives
401. Note, in the partial assignment 𝑆1, the c-heuristic is

not applicable if the #sum aggregate is evaluated under the
standard declarative semantics of ASP. This semantics
assumes that the truth assignments for the b/1 atoms are
fixed.

By adding the shown heuristic directives to the exam-
ple program, wrong choices, which lead to backtracks,
can be avoided for the depicted problem instance. The
following section will present the syntax and semantics
of heuristics that employ dynamic aggregates.

4. Syntax and semantics
In [6] domain-specific heuristics for answer set pro-
gramming were proposed which allow to reason about
the current state of the problem-solving process. This
state is reflected by the latest partial assignment. Con-
sequently, heuristic directives are evaluated w.r.t. this
assignment. However, in the declarative semantics of
ASP the truth value of aggregates as presented in the ex-
ample (e.g., S = #sum{Y ∶ b(Y)}) can only be determined
w.r.t. a fixed set of truth assignments for atoms. In the
declarative semantics of ASP assigning a truth value
to S = #sum{Y ∶ b(Y)} implies that the set of b/1 atoms
which are assigned to true is fixed, i.e., rules must not be
applied which assert additional b/1 atoms to true.

However, in the spirit of [6] we propose to evaluate ag-
gregates w.r.t. the latest partial assignment 𝑆𝑖 to evaluate
heuristic directives for determining the choice, i.e., which
rule to apply to compute the next partial assignment.

Definition 1 (Heuristic Directive). A heuristic direc-
tive is of the form ⟨2⟩, where 𝑎𝑖 (0 ≤ 𝑖 ≤ 𝑛) are atoms and
𝑤 and 𝑙 are integer terms.

#heuristic 𝑎0 ∶ 𝑎1, … , 𝑎𝑘,
not 𝑎𝑘+1, … , not 𝑎𝑛.[𝑤@𝑙] ⟨2⟩

The heuristics’ head is given by 𝑎0 and its condition by
{𝑎1, … , 𝑎𝑘, not 𝑎𝑘+1, …, not 𝑎𝑛}.

We call an atom in a heuristic directive a heuristic
atom. We now describe our semantics, beginning with
the condition under which a heuristic atom is satisfied.

Definition 2 (Satisfying a Heuristic Atom). Given a
ground heuristic atom 𝑎 and a partial assignment 𝐴, 𝑎 is
satisfied w.r.t. 𝐴 iff 𝑎 ∈ 𝐴T, i.e., atom a is assigned to true.

The head of a heuristic directive 𝑑 of the form ⟨2⟩ is
denoted by head(𝑑) = 𝑎0, its weight by weight(𝑑) = 𝑤
if given, else 0, and its level by level(𝑑) = 𝑙 if given, else
0. The (heuristic) condition of a heuristic directive 𝑑 is
denoted by cond(𝑑) ∶= {𝑎1, … , 𝑎𝑘, not 𝑎𝑘+1, … , not 𝑎𝑛},
the positive condition is cond+(𝑑) ∶= {𝑎1, … , 𝑎𝑘} and the
negative condition is cond−(𝑑) ∶= {𝑎𝑘+1, … , 𝑎𝑛}.

Whether a heuristic directive is satisfied depends on
whether the atoms occurring in the directive are satisfied.

78

Definition 3 (Satisfying a Heuristic Directive).
Given a ground heuristic directive 𝑑 and a partial
assignment 𝐴, cond(𝑑) is satisfied w.r.t. 𝐴 iff: every
𝑎 ∈ cond+(𝑑) is satisfied and no 𝑎 ∈ cond−(𝑑) is satisfied.

Intuitively, a heuristic condition is satisfied iff its posi-
tive part is fully satisfied and none of its default-negated
literals is contradicted.

Definition 4 (Applicability of a Heuristic Directive).
A ground heuristic directive 𝑑 is applicable w.r.t. a partial
assignment 𝐴 and a ground program 𝑃 iff: cond(𝑑)
is satisfied, ∃𝑟 ∈ 𝑃 s.t. head(𝑟) = head(𝑑) and {T 𝑎 ∣
𝑎 ∈ body+(𝑟)} ⊆ 𝐴 and {M 𝑎 ∣ 𝑎 ∈ body−(𝑟)} ∩ 𝐴 = ∅,
and head(𝑑) ∉ (𝐴T ∪ 𝐴F).

Intuitively, a heuristic directive is applicable iff its con-
dition is satisfied, there exists a currently applicable rule
that can derive the atom in the heuristic directive’s head,
and the atom in its head is assigned neither T nor F. If
the atom in the head is assignedM, the heuristic directive
is still applicable, because any atom with the non-final
truth value M must be either T or F in any answer set.

What remains to be defined is the semantics of weight
and level. Given a set of applicable heuristic directives,
one directive with the highest weight will be chosen from
the highest level.

Definition 5 (Heuristics Eligible for Choice).
Given a set 𝐷 of applicable ground heuristic directives,
the subset eligible for immediate choice is defined as
maxpriority(𝐷) in two steps:

maxlevel(𝐷) ∶= {𝑑 ∣ 𝑑 ∈ 𝐷 and
level(𝑑) = max𝑑∈𝐷 level(𝑑)}

maxpriority(𝐷) ∶= {𝑑 ∣ 𝑑 ∈ maxlevel(𝐷) and
weight(𝑑) = max𝑑∈maxlevel(𝐷)weight(𝑑)}

After choosing a heuristic using maxpriority, a solver
makes a decision on the directive’s head atom. Other solv-
ing procedures, e.g., deterministic propagation, are unaf-
fected by processing heuristics. In case no heuristic di-
rective is applicable or multiple directives have the same
maxpriority the solver’s default heuristic (e.g., VSIDS)
makes a choice as usual.

Aggregate atoms may be employed in the condition of
a heuristics directive. An aggregate atom is of the form

𝑠1 ≺1 𝛼 {t ∶ 𝑙11 , … , 𝑙𝑚1 ; … ;
t ∶ 𝑙1𝑛 , … , 𝑙𝑚𝑛} ≺2 𝑠2

where t corresponds to a variable, an integer, or a ground
atom. We call t an aggregate term. 𝛼 refers to some
aggregate function that is applied to the multiset of ag-
gregate terms t that remain after evaluating the condition

Figure 1: Integration of Alpha and Prolog

𝑙1𝑖 , … , 𝑙𝑚𝑖 . The aggregate terms are treated as members of
a mulitset. Duplicates are allowed.1

The result of applying 𝛼 is exploited to evaluate the
comparison condition expressed by 𝑠1 ≺1 and ≺2 𝑠2.
These conditions may be omitted. 𝑠1, 𝑠2 are terms, e.g.,
numbers or variables. 𝑠1 ≺1 and ≺2 𝑠2 are called guards.
For the guard operator ≺ comparison operators such as
=, ≠, ≤, ≥, <, > may be employed.

If in t ∶ 𝑙1𝑖 , … , 𝑙𝑚𝑖 of an aggregate atom the term t is a
variable, then this variable must be safe. This variable
is safe if it is contained in the condition or it is a global
variable. A variable in a heuristic directive 𝑑 is global if
it appears in a classical atom in cond+(𝑑) or in a guard
of an aggregate atom of 𝑑 where ≺ corresponds to =.

We allow aggregate functions 𝛼 like #count (the num-
ber of aggregate terms) or #sum (sum of aggregate terms).

An aggregate atom is satisfied if the value computed
by the aggregate function respects the given bounds,
e.g., 1 = #sum{1 ∶ a; 1 ∶ b} is satisfied if either a
or b is true. Let us assume that the facts a(1). a(2).
b(5). are given. Evaluating the aggregate atom X =
#sum{Y ∶ a(Y);Y ∶ b(Y)} will bind 8 to variable X.

5. Integration into a
lazy-grounding ASP solver

In search for answer sets, Alpha applies heuristics to se-
lect an active choice point. In contrast to [6], the heuristic
directives are transformed to Prolog queries and evalu-
ated by a Prolog interpreter. We have chosen this ap-
proach to implement the efficient evaluation of dynamic
aggregates in heuristic directives.

Figure 1 shows the integration of Alpha with Prolog.
Query-driven heuristics are employed by Alpha if the

-uqh flag is set. The heuristic directives are removed from
the input program and translated into internal data struc-
tures. These data structures comprise all the necessary
1Note that this semantics differs from the ASP semantics of aggre-
gates employed in rules. First, for our prototypical system t is a
single term and not a tuple of terms for simplicity reasons. Sec-
ond, we allow a multiset of aggregate terms instead of a set, i.e.,
we do not remove duplicates. Sets and multisets can be easily im-
plemented. However, the removal of duplicates may introduce
additional computational costs.

79

information for evaluating the heuristic directives, such
as their head atom, variables, atoms occurring inside the
heuristic, and crucially, their respective Prolog query.
Thus, the heuristic directives are separately stored from
the program and are all evaluated whenever a choice is
made.

As an example, the following heuristic directive

#heuristic c(X) ∶
x(X), not b(X), S = #sum{Y ∶ b(Y)},
W = S ∗ 10 + X. [W@1]

is translated to the following Prolog query:
x(X), \+ b(X),

aggregate_all(sum(Y), b(Y), _0), S is _0 ,
WEIGHT is S ∗ 10 + X , LEVEL is 1 , \+ c(X).

The Prolog predicate aggregate_all(+Template ,
∶ Goal , −Result) aggregates bindings in Goal according
to Template . Possible template values comprise the
aggregate functions, count , sum(X), max(X), and min(X).
The variable in sum(X), max(X), and min(X) corresponds to
the variable serving as aggregate term and is instantiated
by querying Goal which contains this variable. The
result is bound to an anonymous variable (_0 in our
example) and exploited in the aggregates’ guards. Any
negated atom is preceded by the operator \+, equivalent
to not for our purposes. Finally, the negated head atom
of the heuristic directive is added to the query to exclude
already assigned head atoms.

During problem-solving, Alpha synchronizes the as-
signments with the database of the Prolog system. Every
atom assigned as true by Alpha is inserted in the Prolog
database. If such atoms are removed from the assignment,
the corresponding facts are retracted from the Prolog
database. Atoms assigned to false or must-be-true by
Alpha are not considered since the heuristic directives
are evaluated on atoms assigned to true.

The current implementation of Alpha sources and
binaries which implement query-driven heuristics can
be found on https://github.com/tilmanni/Alpha/tree/
domspec_heuristics_extended_prolog.

6. Evaluation
We tested our approach to declarative domain-specific
query-driven heuristics by creating heuristics for two
example domains and applying the extended Alpha sys-
tem. The two concrete domains under investigation were
the Partner Units Problem (PUP) and the Balanced Sum
Problem (BSP) introduced in Section 3.

These two problems are abstracted variants of typical
configuration (sub)problems experienced in more than
25 years of applying AI technology in the automated con-
figuration of electronic systems [3]. To put ASP systems
under stress, we used problem encodings and instances of

varying sizes, where the larger instances were challeng-
ing to ground and/or to solve. More precisely, traditional
grounders excessively consumed space or time when
grounding these instances, and/or solving was infeasible
without domain-specific heuristics.

6.1. Experimental setup
Encodings (including heuristics) and instances used for
our experiments are available online.2

Alpha was used without justification analysis [12]
(command-line argument -dj) and without support for
negative integers in aggregates (-dni). Apart from that,
Alpha was used in its default configuration. The JVM
running Alpha was called with command-line parame-
ters -Xms1G -Xmx24G , thus initially allocating 1 GiB for
Java’s heap and setting the maximum heap size to 24 GiB.
The Prolog interpreter swi-prolog3 [13] version 9.0.4 was
integrated with Alpha via jpl.4 For comparison, clingo5

[14] was used in version 5.6.2.
Each of the machines used to run the experiments ran

Ubuntu 22.04.2 LTS Linux and was equipped with two
Intel® Xeon® E5-2650 v4 @ 2.20GHz CPUs with 12 cores.
Hyperthreading was disabled and the maximum CPU
frequency was set to 2.90GHz. Scheduling of benchmarks
was done with slurm6 version 21.08.5. runsolver7 v3.4.1
was used to limit time consumption to 10 minutes per
instance and memory to 32 GiB. Care was taken to avoid
side effects between CPUs, e.g., by requesting exclusive
access to an entire machine for each benchmark.

All solvers were configured to search for the first
answer set of each problem instance. Finding one or
only a few solutions is often sufficient in industrial use
cases since solving large instances can be challenging
[3]. Therefore, the domain-specific heuristics used in
the experiments are designed to help the solver find one
answer set that is “good enough”, even though it may
not be optimal.

6.2. Case Study 1: The Partner Units
Problem (PUP)

The Partner Units Problem (PUP) [15] is an abstracted
version of industrial configuration problems. In partic-
ular, PUP deals with configuring parts of railway safety
systems. This problem is a benchmark problem for ASP
systems since its challenges for grounding and solving.

2https://github.com/tilmanni/Alpha/tree/domspec_heuristics_
extended_prolog/Evaluation

3https://www.swi-prolog.org/
4https://jpl7.org/
5https://potassco.org/clingo/
6https://slurm.schedmd.com/
7https://github.com/utpalbora/runsolver

80

s1 s2 s3 s4 s5 s6

z1 z123 z24 z35 z456 z6

u1
u2
u3

UCAP = 2
IUCAP = 2

s1 s2 s3 s4 s5 s6

z1 z123 z24 z35 z456 z6

u1 u2 u3

Figure 2: Sample PUP instance and one of its solutions [6]

Definition 6 (PUP). The input to the (PUP) is given by
a set of units 𝑈 and a bipartite graph 𝐺 = (𝑆, 𝑍 , 𝐸) (also
called the input graph), where 𝑆 is a set of sensors, 𝑍 is a
set of zones, and 𝐸 is a relation between 𝑆 and 𝑍.

The task is to find a partition of vertices 𝑣 ∈ 𝑆∪𝑍 into bags
𝑢𝑖 ∈ 𝑈 such that for each bag the following requirements
hold: (1) the bag contains at most UCAP vertices from 𝑆
and at most UCAP vertices from 𝑍; and (2) the bag has at
most IUCAP adjacent bags, where the bags 𝑢1 and 𝑢2 are
adjacent whenever 𝑣𝑖 ∈ 𝑢1 and 𝑣𝑗 ∈ 𝑢2 for some (𝑣𝑖, 𝑣𝑗) ∈ 𝐸.

We say a unit 𝑢𝑖 is connected to a sensor/zone iff the
sensor/zone is in 𝑢𝑖. Two units are connected iff they are
adjacent. Connections correspond to physical connec-
tions in an assembled configuration.

Figure 2 shows an example of a PUP instance. The
bipartite graph comprises six sensors and six zones. Each
of the three units can be adjacent to at most two other
units, and each unit can contain at most two sensors and
two zones. Connections of sensors, zones, and units that
satisfy all PUP requirements are presented in Figure 2.

Encodings and instances. To show the application
and effectiveness of query-driven heuristics, we focus on
the PUP instances employed in the ASP competition [5].
Domain-specific heuristics allow exploiting knowledge
about properties of classes of problem instances. We
concentrate on the double and double-variant classes
of PUP instances. For these instances, domain-specific
heuristics were formulated.

Figure 3 shows the basic structure of the double in-
stances. There are two rows of rooms connected by doors.
Each room corresponds to a zone, and each door repre-
sents a sensor. For each room and the doors of this room,
there is an edge in the bipartite graph 𝐺, i.e., the zone
and its doors are connected through an edge. The dou-
ble instances’ sizes vary depending on the number of
columns of rooms. The structure depicted in Figure 3
shows three columns of rooms. The bipartite graphs 𝐺
of the double-variant instances comprise the nodes and
edges of the double instances. However, each dotted
rectangle represents an additional zone (i.e., the dotted
rectangle clusters rooms). Each door (i.e., a sensor) next

Figure 3: Double and double-variant instances

to a dotted rectangle (i.e., a zone) is connected by an
edge in 𝐺. Note that there is no edge between a door
surrounded by a rectangle and the zone corresponding
to this rectangle.

Heuristics. The double PUP instances can be solved
efficiently without backtracking by formulating the fol-
lowing heuristic directives, which employ dynamic ag-
gregates.

#heuristic assigned_sensor_unit(S,U) ∶
assignable_sensor_unit(S,U),
not sensor_blocked_on_unit(S,U),
Deg_sensor_dyn =
#count{Z ∶ zone2sensor(Z, S),

assigned_zone_unit(Z, _)},
Forbidden_placement_total =
#max{N ∶ num_forbidden_places_of_sensors(S,N)},

Assigned_sensors_unit =
#count{SN ∶ assigned_sensor_unit(SN,U)},

Direct_con_zones =
#count{Z ∶ assigned_zone_unit(Z,U),

zone2sensor(Z, S)},
W =
Deg_sensor_dyn ∗ 10000+
Forbidden_placement_total ∗ 1000+
Assigned_sensors_unit ∗ 100+
Direct_con_zones ∗ 10.[W@0]

The atom assignable_sensor_unit(S,U) is true if a sen-
sor is ready to be assigned, i.e., if a sensor is connected to
a zone in the input graph and this zone is connected
to a unit. The atom sensor_blocked_on_unit(S,U) is
true if sensor 𝑆 cannot be connected to unit U. The
variable Deg_sensor_dyn is assigned to the number
of zones connected to sensor S in the input graph
and which are already assigned to a unit. The atom
zone2sensor(Z, S) encodes the edges of the input graph
(i.e., connections between zones and sensors). Values
of the variable Deg_sensor_dyn express the number of
constraints put on placing sensor S. We prefer con-
necting sensors to units with a higher number of con-
straints. The atom num_forbidden_places_of_sens(S,N)
represents the number of connections to units that are not
possible for 𝑆 for a given set of connections between sen-
sors, zones, and units (e.g., the configuration in a specific

81

qh-alpha (10) clingo (3) h-clingo (5)

(a) Solver configurations, with numbers of solved instances

1 2 3 4 5 6 7 8 9 10
Number of instances

102

103

104

105

N
um

be
r
of

gu
es
se
s

(b) Number of guesses

1 2 3 4 5 6 7 8 9 10
Number of instances

0

1

2

3

R
ea
lt
im

e
(m

in
ut
es
)

(c) Time consumption

1 2 3 4 5 6 7 8 9 10
Number of instances

0

2

4

6

8

10

12

M
em

or
y
(G

iB
)

(d) Memory consumption

Figure 4: Resource consumption for solving each PUP Double instance

partial assignment). Rules compute different numbers
depending on the connections. We prefer connecting sen-
sors to units with a higher number of forbidden places
(i.e., connections). The variable Assigned_sensors_unit
counts the number of sensors connected to unit U. The
variable Direct_con_zones counts the number of zones
that are connected to unit U and which are connected to
sensor S in the input graph. All these numbers are added
with different weights resulting in the final weight of the
heuristic directive expressing the priority to connect S
and U. The design of the heuristic directive follows the
principle of preferring assignments of connections that
are most constrained in the spirit of heuristics of heuris-
tics for constraint satisfaction problems (CSPs) such as
“fail-first” or “degree” [16].

The second heuristic for assigning zones to units in
double PUP instances can be formulated shorter than the
presented one. We prefer assignments of zones to units
U, where the number of connected zones to U is high,
and the number of possible connections for sensors to U
and its adjacent units is large.

Results. Figure 4 shows performance data for experi-
ments with the double PUP instances. Cactus plots were
created in the usual way. In Figure 4c, the x-axis gives the
number of instances solved within real (i.e., wall-clock)
time, given on the y-axis. Similarly, Figure 4b shows
the number of guesses needed and Figure 4d shows the
memory consumed to solve the instances. In all plots,
data points are sorted by y-values. Figure 4a contains a
legend with all solver configurations. The number of in-
stances solved by each system is shown next to its name
(in parentheses).

One curve was drawn for each solver configuration:
Alpha with query-driven evaluation of domain-specific
heuristics (qh-alpha), and clingowith (h-clingo) andwith-
out domain-specific heuristics.

Figure 5 shows the results for the double-variant in-
stances in exactly the same way.
Alpha was used with encodings and heuristics de-

signed to achieve a good performance as described above.
clingo was used with the “new” encoding from the Fifth
ASP competition8 [17]. h-clingo used the domain-specific
heuristics devised in previous work [6]. Both systems
used the same sets of problem instances, which consisted
of 10 instances of the “double” class (with a number of
units ranging between 20 and 200), and 6 instances of the
“double-variants” class (with 30–180 units).

Substantial differences can be observed. The curves
for qh-alpha reach farthest to the right, meaning that
Alpha with query-driven heuristics solved the highest
number of instances (all 10 double, 5 of 6 double-variants).
clingo needed more time and thus solved fewer instances.
Apparently, the domain-specific heuristics used with h-
clingo were not useful for solving the double-variants
instances.

6.3. Case Study 2: The Balanced Sum
Problem (BSP)

The second evaluation case deals with the BSP. In con-
figuring, sub-problems arise where quantities such as
power consumption should be equally distributed.

8https://www.mat.unical.it/aspcomp2014/#Participants.2C_
Encodings.2C_Instance_Sets

82

qh-alpha (5) clingo (3) h-clingo (0)

(a) Solver configurations, with numbers of solved instances

1 2 3 4 5
Number of instances

102

103

104

105

106

107

N
um

be
r
of

gu
es
se
s

(b) Number of guesses

1 2 3 4 5
Number of instances

0

1

2

3

4

5

6

7

8

R
ea
lt
im

e
(m

in
ut
es
)

(c) Time consumption

1 2 3 4 5
Number of instances

0

1

2

3

4

5

6

7

8

M
em

or
y
(G

iB
)

(d) Memory consumption

Figure 5: Resource consumption for solving each PUP DoubleV instance

qh-alpha (100) clingo (14)

(a) Solver configurations, with numbers of solved instances

0 15 30 45 60 75 90
Number of instances

101

102

103

104

105

N
um

be
r
of

gu
es
se
s

(b) Number of guesses

0 15 30 45 60 75 90
Number of instances

0

1

2

3

4

5

6

7

8

R
ea
lt
im

e
(m

in
ut
es
)

(c) Time consumption

0 15 30 45 60 75 90
Number of instances

0

2

4

6

8

10

M
em

or
y
(G

iB
)

(d) Memory consumption

Figure 6: Resource consumption for solving each BSP instance

Encodings and instances. As the encoding of the
problem, we use the ASP code introduced in Section 3.
To strain the problem-solving, we increment the num-
ber of x/1 atoms and adapt the constant in the rules for
sumB/1 and sumC/1.

Results. Results obtained for BSP are shown in Fig-
ure 6, which was generated in the same way as for
PUP (cf. Section 6.2). clingo was used with the encod-
ing presented in Section 3, while Alpha used an alter-
native representation of the sum constraints that the
lazy-grounding system could evaluate more efficiently.

Since heuristics in the non-dynamic semantics are not
known for this problem, clingo was only used without
domain-specific heuristics. A hundred instances with
𝑛 ∈ {10, 20, … , 990, 1000} were used for the experiments.

In the BSP experiments, qh-alpha greatly outper-
formed clingo, showing the benefits of domain-specific
heuristics evaluated in a query-driven way within a lazy-
grounding ASP solver. While qh-alpha solved all 100 in-
stances within at most 2.33 minutes per instance, clingo
reaches the grounding bottleneck very quickly and is not
able to solve instances larger than 𝑛 = 140.

83

7. Conclusions and future work
Dynamic heuristics are an effective means for formu-
lating domain-specific heuristics to speed up problem-
solving. We have introduced dynamic aggregates, allow-
ing us to reason about the current problem-solving state.
E.g., we can reason about second-order properties of this
state, such as the number of atoms with specific proper-
ties or summing quantities over sets of atoms or comput-
ing the maximum/minimum of such quantities. We have
provided the prototypical implementation qh-alpha by
integrating Prologwith the lazy-grounding systemAlpha.
This system was evaluated on two problems related to
configuration, i.e., the double and double variant cases of
the well-known Partner Units Problem, and the Balanced
Sum Problem. However, dynamic aggregates are a gen-
eral concept that knowledge engineers can apply to other
problem domains. The evaluation shows that dynamic
aggregates employed in domain-specific heuristics can
considerably improve solving performance.

In futurework, we plan to develop further the prototyp-
ical implementation to incorporate standard semantics of
aggregate elements and terms. Additionally, exploring in-
corporating sign set semantics in query-driven heuristics
would further enhance expressiveness. Efforts should
also be made to utilize query-driven and regular domain-
specific heuristics concurrently. Finally, we recommend
evaluating the feasibility of applying the query-driven
approach to specific aggregates in normal rules as an
alternative to resource-intensive normalization.

Acknowledgments
The authors are grateful to the TU Wien for providing
access to computational resources for running the exper-
iments and to Tobias Geibinger for helping with using
this infrastructure.

References
[1] M. Gebser, R. Kaminski, B. Kaufmann, M. Lin-

dauer, M. Ostrowski, J. Romero, T. Schaub, S. Thiele,
P. Wanko, Potassco guide version 2.2.0, 2019.
URL: https://github.com/potassco/guide/releases/
tag/v2.2.0.

[2] A. A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe,
E. C. Teppan, Industrial applications of answer set
programming, Künstliche Intell. 32 (2018) 165–176.

[3] A. A. Falkner, G. Friedrich, A. Haselböck, G. Schen-
ner, H. Schreiner, Twenty-five years of successful
application of constraint technologies at Siemens,
AI Magazine 37 (2016) 67–80.

[4] M. Gebser, R. Kaminski, A. König, T. Schaub, Ad-
vances in gringo series 3, in: LPNMR, volume 6645

of Lecture Notes in Computer Science, Springer, 2011,
pp. 345–351.

[5] M. Gebser, M. Maratea, F. Ricca, The seventh an-
swer set programming competition: Design and
results, Theory Pract. Log. Program. 20 (2020)
176–204.

[6] R. Comploi-Taupe, G. Friedrich, K. Schekotihin,
A. Weinzierl, Domain-specific heuristics in answer
set programming: A declarative non-monotonic
approach, J. Artif. Intell. Res. 76 (2023) 59–114.

[7] A. Weinzierl, Blending lazy-grounding and CDNL
search for answer-set solving, in: LPNMR, volume
10377 of Lecture Notes in Computer Science, Springer,
2017, pp. 191–204.

[8] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kamin-
ski, T. Krennwallner, N. Leone, M. Maratea, F. Ricca,
T. Schaub, ASP-Core-2 input language format, The-
ory Pract. Log. Program. 20 (2020) 294–309.

[9] L. Liu, E. Pontelli, T. C. Son, M. Truszczynski, Logic
programs with abstract constraint atoms: The role
of computations, in: ICLP, volume 4670 of Lec-
ture Notes in Computer Science, Springer, 2007, pp.
286–301.

[10] C. Lefèvre, C. Béatrix, I. Stéphan, L. Garcia, AS-
PeRiX, a first-order forward chaining approach for
answer set computing, Theory Pract. Log. Program.
17 (2017) 266–310.

[11] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
S. Malik, Chaff: Engineering an efficient SAT solver,
in: DAC, ACM, 2001, pp. 530–535.

[12] B. Bogaerts, A. Weinzierl, Exploiting justifications
for lazy grounding of answer set programs, in:
IJCAI, ijcai.org, 2018, pp. 1737–1745.

[13] J. Wielemaker, T. Schrijvers, M. Triska, T. Lager,
Swi-prolog, Theory Pract. Log. Program. 12 (2012)
67–96. doi:10.1017/S1471068411000494 .

[14] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub,
Multi-shot ASP solving with clingo, Theory Pract.
Log. Program. 19 (2019) 27–82.

[15] E. C. Teppan, Solving the partner units configura-
tion problem with heuristic constraint answer set
programming, in: Configuration Workshop, 2016,
pp. 61–68.

[16] S. J. Russell, P. Norvig, Artificial Intelligence – A
Modern Approach, Fourth Edition, Pearson Educa-
tion, 2022.

[17] F. Calimeri, M. Gebser, M. Maratea, F. Ricca, Design
and results of the fifth answer set programming
competition, Artif. Intell. 231 (2016) 151–181. doi:10.
1016/j.artint.2015.09.008 .

84

Towards a formalization of configuration problems for
ASP-based reasoning: Preliminary report
Nicolas Rühling1,2,*, Torsten Schaub1,2 and Tobias Stolzmann1,2

1University of Potsdam, Germany
2Potassco Solutions, Germany

Abstract
We develop a principled approach to configuration that targets Answer Set Programming by integrating established concepts
in a uniform setting. We begin by defining an abstract specification of configuration problems, drawing on concepts from
the literature. We define both, user requirements and configuration solutions, as (partial) instantiations of a configuration
model, and require the latter to be an extension of the former. The core of our configuration models comprise a partonomic
structure which is adorned with constraints over atomic and aggregated attributes. Driven by this principled approach, we
then develop a domain-independent ASP encoding for configuration.

Keywords
Answer Set Programming, Configuration, Encoding

1. Introduction
Configuration has been a central topic in AI since several
decades [1, 2, 3]. Early on already, non-monotonic for-
malisms emerged as a promising alternative for modeling
configuration problems [4]. Nowadays, this role is filled
by Answer Set Programming (ASP) [5], a non-monotonic
problem solving paradigm, combining an easy, rule-based
modeling language with high performance solving ca-
pacities [6, 7]. Over the years, this has led to several
applications of ASP to configuration problems, among
them [8, 9, 10] and notably the ASP-based configuration
systems WeCoTin [11] and VariSales [12].

Our objective is to develop a principled ASP-oriented
approach to configuration, which integrates established
concepts from configuration in a uniform setting. How-
ever, while ASP usually strives for generality, aiming at
problem encodings covering the greatest possible class of
problems, many approaches to configuration appear to
be more down-to-earth, targeting more specific classes
of configuration problems. Hence, as an intermediate
step, we begin by defining an abstract specification of
configuration problems, drawing on concepts borrowed
from [13, 2, 14]. More precisely, we describe configura-
tion problems in terms of a configuration model, user
requirements and resulting configuration solutions [15].
Both user requirements and solutions are defined as (par-
tial) instantiations of the configuration model [13], where

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
*Corresponding author.
$ nruehling@uni-potsdam.de (N. Rühling)
� 0000-0001-5157-6788 (N. Rühling); 0000-0002-7456-041X
(T. Schaub); 0000-0002-1436-0715 (T. Stolzmann)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

the latter is required to be an extension of the former. The
core of our configuration models comprise a partonomic
structure which is adorned with constraints over atomic
and aggregated attributes.

Driven by this principled approach, we then develop a
domain-independent ASP encoding for configuration.

The paper is structured as follows. In section 2 we
formally define a configuration problem and its solutions.
Section 3 discusses how constraints and aggregation of
values are handled. In section 4 we present the ASP fact
format and encoding and show how to solve configura-
tion problems using the ASP solver clingo. Section 5 gives
an overview of related work and section 6 concludes the
paper.

2. Configuration problem and
solutions

We represent configuration problems as (configuration)
models along with one of their (partial) instantiations.
Formally, both are expressed in terms of (directed) multi-
graphs;1 the model’s graph delineates the ones capturing
partial instantiations. User requirements and solutions
are both represented by instantiations.

A configuration problem is a pair (𝑀, 𝐼). A simple
example is given in Figure 1. The (configuration) model
𝑀 is a tuple (𝑇, 𝑃, 𝑠𝑝, 𝑡𝑝, 𝐷, 𝑉,𝐸,𝐶, de, at , co), where

1. (𝑇, 𝑃, 𝑠𝑝, 𝑡𝑝) is a multigraph, where
a) 𝑇 is a set of types,
b) 𝑃 = 𝑃𝑃 ∪𝑃𝐶 is a partition of ports, where

i. 𝑃𝑃 is a set of partonomic ports,
ii. 𝑃𝐶 is a set of connection ports,

1A multigraph is a graph admitting more than one arc between two
vertices; for this, we use edges with own identity.

85

frame

Bike

Frame Wheel

frontWheel

Bag

bag

rearWheel

bag

wheel1 wheel2

bike

bag1 bag2

a1
a2

a3 a4

p1

p2

p3

p4
p5

Figure 1: Example of a simple configuration problem.

c) 𝑠𝑝 : 𝑃 → 𝑇 assigns a port its source type,
d) 𝑡𝑝 : 𝑃 → 𝑇 assigns a port its target type,

and
e) (𝑇, 𝑃𝑃 , 𝑠𝑝, 𝑡𝑝) is a rooted acyclic graph,

2. 𝐷 = 𝐷𝑃 ∪𝐷𝐴 is a partition of descriptors, where
a) 𝐷𝑃 is a set of port descriptors,
b) 𝐷𝐴 is a set of attribute descriptors,

3. 𝑉 is a set of values,
4. 𝐸 is a set of evaluators,
5. 𝐶 is a set of table constraints,
6. 𝑑𝑒 : 𝑃 → 𝐷𝑃 assigns a port its port descriptor,

such that
if 𝑠𝑝(𝑝) = 𝑠𝑝(𝑝

′) and 𝑑𝑒(𝑝) = 𝑑𝑒(𝑝′)
then 𝑝 = 𝑝′ for all 𝑝, 𝑝′ ∈ 𝑃 ,

7. 𝑎𝑡 : 𝑇 → 2𝐷𝐴×𝐸 assigns a type its set of at-
tribute descriptors and evaluators, such that

for any type 𝑡 ∈ 𝑇 , if (𝑑, 𝑒), (𝑑, 𝑒′) ∈ 𝑎𝑡(𝑡)
then 𝑒 = 𝑒′, and

8. 𝑐𝑜 : 𝑇 → 2𝐶 assigns a type its set of constraints.

We often refer to (𝑇, 𝑃, 𝑠𝑝, 𝑡𝑝) as the model graph, and
to (𝑇, 𝑃𝑃 , 𝑠𝑝, 𝑡𝑝) as the partonomy (graph); its root rep-
resents the configured object.

An example of a model graph is given on the
left in Figure 1. It consists of four types, 𝑇 =
{Bike,Frame,Wheel ,Bag}, linked by five partonomic
ports, viz. 𝑃𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} with source
𝑠𝑝(𝑝1) = 𝑠𝑝(𝑝2) = 𝑠𝑝(𝑝3) = Bike , 𝑠𝑝(𝑝4) = Frame ,
𝑠𝑝(𝑝5) = Wheel and target 𝑡𝑝(𝑝1) = Frame , 𝑡𝑝(𝑝2) =
𝑡𝑝(𝑝3) = Wheel and 𝑡𝑝(𝑝4) = 𝑡𝑝(𝑝5) = Bag . The cor-
responding descriptors are 𝑑𝑒(𝑝1) = frame , 𝑑𝑒(𝑝2) =
frontWheel , 𝑑𝑒(𝑝3) = rearWheel and 𝑑𝑒(𝑝4) =
𝑑𝑒(𝑝5) = bag . Note that two ports can have the same
descriptor as long as their source type is different. In
usual graph terminology, this amounts to two edges
(Bike,Wheel) labeled with frontWheel and rearWheel ,

respectively. A third edge (Bike,Frame) labeled with
frame and a fourth and fifth edge (Frame,Bag), resp.
(Wheel ,Bag), both labeled with bag . The other compo-
nents of a configuration model are detailed in Section 3.

An instantiation 𝐼 of 𝑀 is a tuple
(𝑂,𝐴, 𝑠𝑎, 𝑡𝑎,𝑚𝑂,𝑚𝐴, 𝑋, 𝑣), where

1. (𝑂,𝐴, 𝑠𝑎, 𝑡𝑎) is a multigraph, where
a) 𝑂 is a set of objects,
b) 𝐴 is a set of associations,
c) 𝑠𝑎 : 𝐴 → 𝑂 assigns an association its

source object,
d) 𝑡𝑎 : 𝐴 → 𝑂 assigns an association its

target object,
2. 𝑚𝑂 : 𝑂 → 𝑇 maps objects to types,

𝑚𝐴 : 𝐴 → 𝑃 maps associations to ports, such
that for all 𝑎 ∈ 𝐴

a) 𝑚𝑂(𝑠𝑎(𝑎)) = 𝑠𝑝(𝑚𝐴(𝑎)), and
b) 𝑚𝑂(𝑡𝑎(𝑎)) = 𝑡𝑝(𝑚𝐴(𝑎)),

3. 𝑋 = {(𝑜, 𝑑) | 𝑜 ∈ 𝑂, (𝑑, 𝑒) ∈
𝑎𝑡(𝑚𝑂(𝑜)) for some 𝑒 ∈ 𝐸} is a set of attribute
variables, and

4. 𝑣 : 𝑋 → 𝑉 maps attribute variables to values.

For simplicity, we sometimes drop the subscripts of 𝑚𝑂

and 𝑚𝐴 and simply write 𝑚, when clear from the type
of argument.

An example instantiation of the configuration model
in Figure 1 is given on its right. It includes ob-
jects 𝑂 = {bike,wheel1 ,wheel2 , bag1 , bag2} whose
relationships are fixed via the associations 𝐴 =
{𝑎1, 𝑎2, 𝑎3, 𝑎4} with source 𝑠𝑎(𝑎1) = 𝑠𝑎(𝑎2) =
bike and 𝑠𝑎(𝑎3) = 𝑠𝑎(𝑎4) = wheel1 , and target
𝑡𝑎(𝑎1) = wheel1 , 𝑡𝑎(𝑎2) = wheel2 , 𝑡𝑎(𝑎3) =
bag1 , and 𝑡𝑎(𝑎4) = bag2 . The actual instanti-
ation of the configuration model is warranted by
functions 𝑚𝑂 and 𝑚𝐴. The object mappings are

86

𝑚𝑂(bike) = Bike , 𝑚𝑂(wheel1) = 𝑚𝑂(wheel2) =
Wheel , and 𝑚𝑂(bag1) = 𝑚𝑂(bag2) = Bag . The asso-
ciation mappings are 𝑚𝐴(𝑎1) = 𝑝2 and 𝑚𝐴(𝑎2) = 𝑝3,
and 𝑚𝐴(𝑎3) = 𝑚𝐴(𝑎4) = 𝑝5. There are no corre-
sponding objects and associations for type Frame and
partonomic port frame , respectively. This shows that
partial instantiations are fully admissible.

The other components of instantiations are detailed in
Section 3.

Finally, a valid instantiation 𝐼 of 𝑀 satisfies the fol-
lowing conditions:

1. All constraints in co(𝑚(𝑜)) are satisfied for all
𝑜 ∈ 𝑂, and

2. the subgraph (𝑂,𝐴𝑃 , 𝑠𝑎, 𝑡𝑎), where 𝐴𝑃 = {𝑎 ∈
𝐴 | 𝑚𝐴(𝑎) ∈ 𝑃𝑃 } is the set of all parto-
nomic associations, is a tree with root 𝑟 ∈ 𝑂
such that 𝑚𝑂(𝑟) is the (partonomic) root of
(𝑇, 𝑃𝑃 , 𝑠𝑝, 𝑡𝑝).

The satisfaction of constraints is detailed in Section 3.
The first condition ensures consistency of the instan-
tiation while the second guarantees that it is indeed a
configuration of the object in focus where every non-root
object is a part of exactly one other object.

For comparing instantiations in terms of partiality, we
view all components as sets (i.e., functions as relations)
and compare them with set inclusion. Accordingly, we
say that an instantiation 𝐼 ′ is an extension of another
𝐼 , written 𝐼 ≺ 𝐼 ′, if all components of 𝐼 are subsets of
the ones of 𝐼 ′. In this way, we may pose a configuration
problem (𝑀,𝑈) as a configuration model 𝑀 along with
user requirements 𝑈 expressed as a (partial) instantiation
of 𝑀 . We define the set of solutions to (𝑀,𝑈) as

𝑆(𝑀,𝑈) = {𝐼 |𝐼 is a valid instantiation of 𝑀

and 𝑈 ⪯ 𝐼} .

This assures the user requirements are included in any
solution; invalid user requirements or ones which cannot
be extended to a valid instantiation may lack solutions.

A minimal solution of some user requirements 𝑈 is
a valid extension 𝑈 ≺ 𝐼 such that there is no valid
instantiation 𝐼 ′ with 𝑈 ≺ 𝐼 ′ ≺ 𝐼 .

One might wonder why a rigourous specification of
configuration problems as shown above is necessary.
Such a specification allows us to show properties of our
formalism. For example, there is a simple proof that the
solution space behaves monotonically for a fixed model.

Proposition 1. Let 𝑀 be a fixed configuration model.
Then for any user requirements 𝑈 and 𝑈 ′ it holds that
𝑈 ≺ 𝑈 ′ implies 𝑆(𝑀,𝑈 ′) ⊆ 𝑆(𝑀,𝑈).

Proof. Take any 𝐼 ∈ 𝑆(𝑀,𝑈 ′). Per definition 𝐼 is valid
and 𝑈 ′ ≺ 𝐼 , that is, all components of 𝑈 ′ are subsets of 𝐼 .
We also have 𝑈 ≺ 𝑈 ′ so all components of 𝑈 are subsets

of 𝑈 ′. That means all components of 𝑈 are also subsets
of 𝐼 and thus 𝑈 ≺ 𝐼 . It follows that 𝐼 ∈ 𝑆(𝑀,𝑈).

Note that in general this does not hold for minimal
solutions.

3. Constraint handling and
aggregation

The objects in a valid instantiation must satisfy all asso-
ciated constraints in the underlying configuration model.
Apart from the structural constraints imposed by the
model graph, additional constraints can be imposed on
objects (in the instantiation) via their types.

As an example, consider Figure 2 showing the model
graph from Figure 1 but with attributes and constraints.
The model is extended by a set of constraints 𝐶 =
{𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6}, assigned to their corresponding
types, viz. 𝑐𝑜(Bike) = {𝑐1, 𝑐2, 𝑐3}, 𝑐𝑜(Wheel) =
{𝑐4, 𝑐5}, and 𝑐𝑜(Bag) = {𝑐6}.

The attributes are assigned to their types as follows

𝑎𝑡(Bike) = {(maxWeight ,⊤), (minStowage,⊤),
(totalWeight , 𝑒1), (stowage, 𝑒2)},

𝑎𝑡(Wheel) = {(size,⊤), (weight ,⊤)}, and

𝑎𝑡(Bag) = {(volume,⊤), (weight ,⊤)}.
Here ⊤, 𝑒1, 𝑒2 ∈ 𝐸 are evaluators whose function is
explained later in this section. While constraint 𝑐1 guar-
antees that the front and rear wheel of a bicycle have
the same size, constraints 𝑐2 and 𝑐3 assure that the val-
ues of the total weight and stowage of the bike lie within
some (possibly user-requested) range. Constraints 𝑐4 and
𝑐5 specify possible combinations of the attributes of the
wheels and bags. Lastly, constraint 𝑐6 expresses that only
small bags can be attached to a wheel.

We represent constraints in their canonical form as
tables. For illustration of how table constraints work,
consider the instantiation in Figure 3 and constraint
𝑐1 ∈ 𝑐𝑜(𝑚(bike)) from Figure 2. This constraint is ex-
pressed as an equality but can easily be rewritten as a
table containing all combinations which satisfy the given
relation. The constraint describes compatible values of
the attribute size of Wheel at paths frontWheel and rear-
Wheel of Bike.

To make this relation precise, we rely on path expres-
sions leading from the type at hand to the attributes in
focus. In our example, they are given in the header of
the table constraint. Notably, given that this structure is
mirrored in corresponding instantiations, the path expres-
sions also allow us to access the values of these attributes
from each object of the type at hand.

More precisely, a path expression is a finite sequence
of descriptors. We distinguish path expressions only in-
cluding port descriptors in 𝐷𝑃 , and the ones consisting

87

frame

Bike

Frame

Wheel

frontWheel1

Bag

bag {0,1,2}

1rearWheel
1

bag{0,2}
size
weight

volume
weight

(frontWheel,size) == (rearWheel,size)c1
(totalWeight) <= (maxWeight) c2

c3 (stowage) >= (minStowage)

totalWeight = sum((*,weight))
stowage = sum((*,volume))
maxWeight
minStowage (size)

22

24

27

29

(weight)

1800

1900

2100

2200

c4

(bag,volume)

10

20

c5(volume)

10

20

50

100

(weight)

100

250

600

1200

c6

Figure 2: Model of bike example with constraints.

frontWheel rearWheel

wheel1 wheel2

bike

size = 27
weight = 2100 size = 27

weight = 2100

frame

frame

bag1 bag2

bag bag

volume = 20
weight = 250

volume = 10
weight = 100

totalWeight = 4550
stowage = 30
maxWeight = 5000
minStowage = 30

Figure 3: Instantiation of bike example.

of a sequence of port descriptors followed by a single at-
tribute descriptor from 𝐷𝐴. We refer to them as port and
attribute path expressions, respectively. Attribute path
expressions are used as attributes in table constraints, as
with (frontWheel , size) or (weight) in Figure 2.

With this, a table constraint is a pair ((𝑑1⃗, . . . , 𝑑�⃗�), 𝑅)

where each 𝑑�⃗� is an attribute path expression for
1 ≤ 𝑖 ≤ 𝑛 and 𝑅 ⊆ 𝑉 𝑛 is an 𝑛-ary relation over 𝑉 .
We use path expressions to select objects as well as at-
tribute variables. For an object 𝑜 ∈ 𝑂 and 𝑛 ≥ 0, we
define

sel𝑜(𝜖) = {𝑜} for the empty path sequence 𝜖. (1)

sel𝑜((𝑑1, . . . , 𝑑𝑛, 𝑑𝑛+1)) =

{𝑜′ ∈ 𝑂 | 𝑎 ∈ 𝐴, 𝑡𝑎(𝑎) = 𝑜′,

𝑠𝑎(𝑎) ∈ sel𝑜((𝑑1, . . . , 𝑑𝑛)), de(𝑚(𝑎)) = 𝑑𝑛+1}
if 𝑑𝑛+1 ∈ 𝐷𝑃 and 𝑑𝑖 ∈ 𝐷𝑃 for 1 ≤ 𝑖 ≤ 𝑛. (2)

sel𝑜((𝑑1, . . . , 𝑑𝑛, 𝑑𝑛+1)) =

{(𝑜′, 𝑑𝑛+1) ∈ 𝑋 | 𝑜′ ∈ sel𝑜((𝑑1, . . . , 𝑑𝑛))}
if 𝑑𝑛+1 ∈ 𝐷𝐴 and 𝑑𝑖 ∈ 𝐷𝑃 for 1 ≤ 𝑖 ≤ 𝑛. (3)

In our example, for constraint 𝑐1 ∈ 𝑐𝑜(𝑚(bike)) we
get

selbike((frontWheel)) = {wheel1} (4)

selbike((rearWheel)) = {wheel2} (5)

selbike((frontWheel , size)) = {(wheel1 , size)} (6)

selbike((rearWheel , size)) = {(wheel2 , size)} . (7)

While (6) and (7) give attribute path expressions, (4) and
(5) give port path expressions.

Given an object 𝑜 ∈ 𝑂 and a valuation 𝑣,
𝑜 satisfies a table constraint ((𝑑1⃗, . . . , 𝑑�⃗�), 𝑅) in
co(𝑚(𝑜)), if (𝑣(𝑥1), . . . , 𝑣(𝑥𝑛)) ∈ 𝑅 for every
(𝑥1, . . . , 𝑥𝑛) ∈ sel𝑜(𝑑1⃗)× · · · × sel𝑜(𝑑�⃗�).

For the type bike in our example in Figure 3, we con-
tinue the illustration of constraint 𝑐1 ∈ 𝑐𝑜(𝑚(bike))
given by

(((frontWheel , size), (rearWheel , size)),

{(22, 22), (24, 24), (27, 27), (29, 29)})

When using the two attribute path expressions to select
attribute variables, we look at the cross product of (6)
and (7):

{((wheel1 , size), (wheel2 , size))} (8)

Applying the valuation 𝑣 from Figure 3, namely,

𝑣 = {(wheel1 , size) ↦→ 27, (wheel2 , size) ↦→ 27, . . . }

88

to the cross product obtained in (8) yields tuple
(27 , 27) which belongs to the binary relation of
𝑐1 ∈ co(𝑚(bike)). In this way, we can check sat-
isfaction of all other constraints of the instantiation
in Figure 3 which are 𝑐𝑜(𝑚(bike)) = {𝑐1, 𝑐2, 𝑐3},
𝑐𝑜(𝑚(wheel1)) = 𝑐𝑜(𝑚(wheel2)) = {𝑐4, 𝑐5}, and
𝑐𝑜(𝑚(bag1)) = 𝑐𝑜(𝑚(bag2)) = {𝑐6}. Due to space
limitations we do not work this out in detail but by com-
paring Figures 2 and 3 it is easy to see that all objects in
our example instantiation satisfy the constraints imposed
by their underlying types. Together with the fact that
the instantiation in Figure 3 is a tree with root bike and
𝑚𝑂(bike) = Bike constitutes the partonomic root of
the model graph, we may conclude that our example is a
valid instantiation of our configuration model.

The constraint illustrated above imposed a relation on
attributes with atomic values. In addition, we want to
account for attributes taking aggregated values. For ex-
ample, the weight of a wheel is (usually) explicitly given,
while that of an entire bike must be calculated from the
weights of its components. Also, we can use calculated
attributes for enforcing port multiplicities, as we show
below. To this end, we allow for attributes whose value is
either assigned or calculated via aggregate functions, like
addition or maximum. We address this via the evaluators
in 𝐸 along with a refinement of the valuation function 𝑣.
As above, we rely on path expressions for selecting the
values subject to aggregation.

Accordingly, an evaluator 𝑒 ∈ 𝐸 is either ⊤, in-
dicating that an atomic value is assigned, or a pair
((𝑑1⃗, . . . , 𝑑�⃗�), 𝑓) where each 𝑑�⃗� is a path expression for
1 ≤ 𝑖 ≤ 𝑚 and 𝑓 is an aggregate function. Aggre-
gate functions are defined on sets and yield an element
from 𝑉 . When the input is the empty set, this is their
neutral element, e.g., 0 for the function sum.

Given 𝑜 ∈ 𝑂, we define for (𝑑, 𝑒) ∈ at(𝑚𝑂(𝑜))

𝑣((𝑜, 𝑑)) =

{︃
𝑣 ∈ 𝑉 if 𝑒 = ⊤
𝑓
(︁⋃︀𝑛

𝑖=1 sel𝑜(𝑑�⃗�)
)︁

if 𝑒 = ((𝑑�⃗�)
𝑛
𝑖=1, 𝑓)

This function combines the assignment of attributes to
atomic and calculated values.

For simplicity, we often write 𝑑 = 𝑓(𝑑1⃗, . . . , 𝑑�⃗�)

whenever (𝑑, ((𝑑1⃗, . . . , 𝑑�⃗�), 𝑓)) ∈ at(𝑡) for some type
𝑡 ∈ 𝑇 . For example, in Figure 2 consider the at-
tribute calculating the total weight of a bike indicated by
totalWeight = sum((*,weight)). In the above notation, this
corresponds to attribute (totalWeight , 𝑒1) ∈ 𝑎𝑡(Bike),
with evaluator 𝑒1 = ((*,weight), sum). The expression
(*,weight) is syntactic sugar for all attribute path expres-
sions pointing to an attribute weight, here expanding to
the sequence

((frontWheel ,weight), (rearWheel ,weight),
(frontWheel , bag ,weight), (rearWheel , bag ,weight),
(frame, bag ,weight)) .

Accordingly, the value of the calculated attribute total-
Weight of object bike is 4550, the sum of two individual
wheel weights 2100 and individual bag weights of 250
and 100, as shown in the instantiation in Figure 3.

The above concepts also allow us to account for port
multiplicities. This can be done by using a calculated
attribute constrained by all legitimate multiplicities. As
an example, consider the model in Figure 2 but with
the type Wheel extended by an attribute #bags along
with the evaluator (((𝑏𝑎𝑔)), count) and the table con-
straint ((#𝑏𝑎𝑔𝑠), ((0), (2))) ; it expresses that a wheel
must have exactly 0 or 2 bags. Instead of writing out the
constraint and auxiliary attribute, we often denote this
by just adding “{0, 2}” to the correponding arrow. Note
that unlike above, the aggregator relies on a port path
expression, yielding the bags bag1, bag2 for wheel1 and
no objects for wheel2. Accordingly, the value of attribute
#bags of wheel1 (resp. wheel2) is 2 (resp. 0). This is among
the admissible values of the constraint imposed by Wheel.

4. An ASP-based solution to
configuration problems

For brevity, we refrain from giving an introduction to
ASP. Full details on the input language of clingo along
with various examples can be found in the Potassco User
Guide [16].

4.1. Configuration model fact format

1 type((bike;wheel;frame;bag)).

3 part(bike,wheel,frontWheel).
4 multiplicity(bike,wheel,frontWheel,1).
5 part(wheel,bag,bag).
6 multiplicity(wheel,bag,bag,(0;2)).

Listing 1: Facts representing parts of the model graph of
the bike example from Figure 2

Listings 1-4 display a snippet of the encoding repre-
senting the bike example from Figure 2. A part of the
model graph is encoded in Listing 1. Types are de-
clared via a type/1 atom where the argument is the
name of the type. Parts are declared via a part/3 atom
with source and target type and port descriptor as ar-
guments. The corresponding multiplicites are encoded
via a multiplicity/4 atom with the same structure as
the part/3 atom plus all possible multiplicities as fourth
argument.

89

1 attr(wheel,size).
2 dom(wheel,size,(22;24;27;29)).
3 attr(wheel,weight).
4 dom(wheel,weight,(1800;1900;2100;2200)).

Listing 2: Facts representing the Wheel attributes of the
bike example from Figure 2

Listing 2 contains the encoding of attributes size and
weight of type Wheel. Atomic attributes are declared
via an attr/2 atom with type and attribute descriptor
as arguments together with domain dom/3 atoms. As
before, the domain atoms have the same structure as
attr/2 atoms plus the possible values as third argument.

1 attr(bike,totalWeight,"sum").
2 path(bike,totalWeight,
3 ((weight,(frontWheel,()));
4 (weight,(rearWheel,())));
5 (weight,(bag,(frontWheel,())));
6 (weight,(bag,(rearWheel,())));
7 (weight,(bag,(frame,())))).

Listing 3: Facts representing a calculated attribute of the
bike example from Figure 2

Listing 3 contains the encoding of the calculated at-
tribute totalWeight from type Bike. Calculated attributes
are declared via an attr/3 atom. The structure is the
same as attr/2 atoms plus the aggregate function as
third argument (currently sum, count, min and max are
supported). The corresponding path expressions which
are used to gather all values are declared via path/3
atoms. The first two arguments have to be the same
as the attr/3 atoms and the third argument is a path
expression. Path expressions follow a nested tuple struc-
ture in ASP with the first element of the sequence being
the innermost. Consider for example the path expres-
sion (𝑑1, 𝑑2, 𝑑3) in the formalism. We express this in
ASP as (d3,(d2,(d1,()))). While this is not easily
readable for humans, it enables one to work dynamically
with tuples of any size in ASP. In the future, we plan
to implement an input and output language which is
human-readable and leave the nested tuple structure for
internal representation.

Constraints are declared via a constraint/1 atom
where the argument is a constraint identifier. In Listing 4
an example of a table constraint is shown. The identifier
is a tuple consisting of the type the constraint is attached
to and an index. The columns of the table are declared via
column/3 atoms containing the constraint identifier, the
index of the column and the path expression. The actual
entries are declared via entry/3 atoms containing the
constraint identifier, a tuple with the index of the column
and row, and the value of the entry.

1 constraint((wheel,0)).
2 column((wheel,0),0,(size,())).
3 column((wheel,0),1,(weight,())).
4 entry((wheel,0),(0,0),22).
5 entry((wheel,0),(1,0),1800).
6 entry((wheel,0),(0,1),24).
7 entry((wheel,0),(1,1),1900).
8 entry((wheel,0),(0,2),27).
9 entry((wheel,0),(1,2),2100).

10 entry((wheel,0),(0,3),29).
11 entry((wheel,0),(1,3),2200).

Listing 4: Facts representing a table constraint of the bike
example from Figure 2

4.2. General problem encoding
The ASP encoding of our formalization can be found in
Listing 5. In Lines 1-6 it is checked that the configuration
model graph is indeed acyclic and rooted. Further, the
type of the root object is determined which is created
in Line 8 (with the correct type as second argument). In
Lines 10-12 objects for each part relation are generated
while making sure that the indices of the objects are as-
signed incrementally. Satisfaction of the multiplicites of
those part relations are assured in Lines 14-15. In Lines 17-
19 values are assigned to attribute values according to
their domain making sure that each object has exactly one
value assigned for all its attributes. All possible port and
attribute selectors are created in Lines 22-24. Using se-
lectors, the correct values for aggregates are determined
and assigned. In Lines 26-27, we show the encoding for
one such aggregate function sum. Our full implementa-
tion which can be found under https://github.com/
potassco/configuration-encoding also contains
the aggregate functions count, min and max. Lastly, in
Lines 29-42 table constraint satisfaction is checked for
each object. First, all possible tuples of the cross product
are created (encoded again as nested tuples). Then the
tuples are unpacked step-by-step while traversing the
columns of the constraint. Only if all tuples satisfy at
least one complete row, the constraint is satisfied.

Due to space limitations, we are not showing the full
implementation of our formalization. As mentioned
above, we are only showing the aggregate function sum.
Additionally, we left out connection ports and compari-
son constraints (e.g., ==, ≤, etc.) in Listing 5. In our full
encoding we also distinguish between mandatory objects
(encoded by normal rules) and optional objects encoded
by choice rules by which we hope to achieve a better
performance. In addition to that, several examples and
files to visualize configuration models and instantiations
using clingraph [17] can be found in the repository linked
earlier.

90

1 partonomic_path(X,Y) :- part(X,Y,_).
2 partonomic_path(X,Z) :- partonomic_path(X,Y), partonomic_path(Y,Z).
3 :- partonomic_path(X,X).

5 root(T) :- type(T), not partonomic_path(_,T).
6 :- {root(T)} > 1.

8 object((),T) :- root(T).

10 { object((D,(O,I)),T) : I = 0..Max-1 } :-
11 object(O,S), part(S,T,D), Max = #max { N : multiplicity(S,T,D,N)}.
12 :- object((D,(O,I)),_), not object((D,(O,I-1)),_), I > 0.

14 :- part(S,T,D), object(O,S), not multiplicity(S,T,D,X),
15 X = #count { I : object((D,(O,I)),T) }.

17 { val((O,D),V) : dom(T,D,V) } :- object(O,T), attr(T,D).
18 :- attr(T,D), object(O,T), not val((O,D),_).
19 :- val(X,V1), val(X,V2), V1 < V2.

21 attr(T,D,"atomic") :- attr(T,D).
22 selector(O,(),O) :- object(O,_).
23 selector(O,(D,P),(D,(O’,I))):- selector(O,P,O’), object((D,(O’,I)),_).
24 selector(O,(D,P),(O’,D)) :- selector(O,P,O’), object(O’,T), attr(T,D,_).

26 val((O,D),V) :- object(O,T), attr(T,D,"sum"),
27 V = #sum { V’,X,P : path(T,D,P), val(X,V’), selector(O,P,X) }.

29 max_col_idx(C,N) :- constraint(C), N = #max{ Col : column(C,Col,_)}.
30 tuple((O,C),N,((),X)) :- object(O,T), max_col_idx((T,C),N),
31 selector(O,P,X), column((T,C),N,P).
32 tuple((O,C),N,(VT,X)) :- object(O,T), tuple((O,C),N+1,VT),
33 selector(O,P,X), column((T,C),N,P), N>=0.

35 sat_row((O,C),VT,(0,Row),VT’) :-
36 object(O,T), tuple((O,C),0,VT), VT = (VT’,X),
37 val(X,V), entry((T,C),(0,Row),V).
38 sat_row((O,C),VT,(Col,Row),VT’’) :-
39 object(O,T), sat_row((O,C),VT,(Col-1,Row),VT’),
40 VT’ = (VT’’,X), val(X,V), entry((T,C),(Col,Row),V).

42 :- tuple(C,0,VT), not sat_row(C,VT,_,()).

Listing 5: ASP encoding for solving configuration problems.

4.3. Instantiation fact format and
obtaining solutions

On the instantiation level, there are two important
atoms object/2 and val/2. They represent objects
and the valuations of attribute variables, respec-
tively. The object/2 atom takes as arguments the
name of the object encoded as a nested tuple and
its type. The nested tuple structure is similar as
for path expressions above (see Section 4.1). The
names are constructed from the partonomic port
descriptors and indices. Take for example the atom

object((bag,((frontWheel,((),0)),1)),bag).
This correponds to the second bag of the first (and only)
wheel with descriptor frontWheel of the root object
(which has type Bike). The root is always encoded as an
empty tuple (). Note that this way of encoding objects
directly assures that the set of partonomic associations
is a tree as required for valid instantiations.

The val/2 atom takes as first argument an attribute
variable encoded as a tuple. The tuple contains the object
name and the attribute descriptor. The second argument
of the atom is the actual value of the variable. For ex-
ample, we have the atom val(((),minStowage),30)

91

which expresses that attribute minStowage of the root
object bike has value 30.

We can run the encoding together with the file of a
model𝑀 to obtain one or multiple stable models. The sta-
ble models correspond to valid instantiations as defined
in Section 2. This is easy to verify, as (table) constraints
are encoded as integrity constraints in ASP, thus have
to be satisfied in every stable model. Further, as men-
tioned above our object structure directly assures that
the set of partonomic associations is a tree and that the
root object has the type of the partonomic root of the
model graph. We can also specify user requirements 𝑈 by
providing, e.g. another input file instantiation.lp.
Every instantiation obtained in form of a stable model
then extends the user requirements and is therefore a
solution to (𝑀,𝑈).

In Listing 6 we run our full encoding with the model
from Figure 2. The user requirements are empty, i.e.,
omitted, and the solution we obtain corresponds to the
one from Figure 3.

$ clingo encoding.lp examples/bike/model.lp
clingo version 5.6.2
Reading from encoding.lp ...
Solving...
Answer: 1
object((),bike)
object((frontWheel,((),0)),wheel)
object((rearWheel,((),0)),wheel)
object((frame,((),0)),frame)
object((bag,((frontWheel,((),0)),0)),bag)
object((bag,((frontWheel,((),0)),1)),bag)
val(((),maxWeight),5000)
val(((),minStowage),30)
val(((frontWheel,((),0)),size),27)
val(((rearWheel,((),0)),size),27)
val(((frontWheel,((),0)),weight),2100)
val(((rearWheel,((),0)),weight),2100)
val(((bag,((frontWheel,((),0)),0)),volume)

,20)
val(((bag,((frontWheel,((),0)),0)),weight)

,250)
val(((bag,((frontWheel,((),0)),1)),volume)

,10)
val(((bag,((frontWheel,((),0)),1)),weight)

,100)
val(((),stowage),30)
val(((),totalWeight),4550)
SATISFIABLE

Listing 6: Running the bike example from Figure 2 in
clingo

5. Related work
Our formalism borrows concepts from various other ap-
proaches in the literature. A general ontology of configu-
ration has been introduced in [13]. Here, a configuration
problem is divided into configuration model knowledge,

configuration solution knowledge and requirements knowl-
edge. However, the paper argues that the latter can be
expressed in terms of the other two. In the model knowl-
edge there are product specific classes called types and a
configuration of a product w.r.t. to a configuration model
is defined as a set of instances of the types occurring in
the model. These instances are called individuals. Con-
straints are specified inside the model and a correct con-
figuration must satisfy these. However, the definition of
constraints is left to an unspecified constraint language.
A configuration also contains configuration specific rela-
tions called properties. Unlike our approach, [13] includes
the concepts of taxonomy and inheritance.

Another formal approach to configuration in the con-
text of constraint programming has been given by [2].
Here, a structural configuration model lays out the possi-
ble variations of the entity to be configured. This model
contains types and attributes, as well as partonomic and
connection ports. Types can be functional or technical
and this restricts the possible kinds of (taxonomic) sub-
types they are allowed to have. Technical types can only
have concrete types as subtypes which can be seen as
"complete" parts ready to be ordered from a catalog. A
configuration can be obtained from a structural model by
instantiating types. Instances inherit the attributes and
ports from their type and all its supertypes. As to what re-
gards constraints, three kinds are defined: compatibility,
requirement and resource constraints.

Lastly, [14] follows a somewhat less formal, object-
oriented approach at modelling configuration problems
where concepts are directly defined in ASP. Again, there
is a distinction between a model and an instantiation.
The model contains a taxonomy of classes and a general
association relation (with no distinction between part and
connection relations). It is noteworthy, that associations
in general have multiplicities in both directions. Further,
attributes are limited to be over the domain of strings,
integers or booleans. In an instantiation of a model, each
object is defined through a global index. An "is-a" relation
ties it to a class. Two objects are connected through
an "associated" relation which has to correpond to an
association relation from the model. Attribute values
assign values to attributes of objects. Constraints are
not specified directly but left open to general integrity
constraints in ASP.

6. Discussion
We presented an approach to model and solve configu-
ration problems and a corresponding encoding for ASP.
A model and its instantiation are expressed through di-
rected multigraphs where the former specifies the pos-
sible graphs of the latter. Similar to [2], the partonomy
of the model graph has to be acyclic. We view this as

92

favorably for object generation.
Apart from the structural constraints imposed by the

model graph, each type in the model may impose con-
straints on itself and its parts. For this we use table
constraints as a canonical representation which spec-
ify possible combinations of attributes. In our view, table
constraints are the most general form of constraints and
other kinds can be expressed through them. Constraints
attached to a type are checked independently for each
object of that type. This guarantees that they are only
applied in the correct context.

Attributes can be atomic, i.e., a value needs to be as-
signed, or calculated. For the latter we make use of ag-
gregate functions. We also formalized the concepts of
path expressions and selectors. The former can be com-
posed of port or attribute descriptors and the latter return
sets of attribute variables or objects. While port multi-
plicites are unbounded in general, we can use aggregate
functions and port path expressions to restrict them.

In contrast to many other approaches, we cannot target
specific objects in the instantiation with our constraints.
For example, in Figure 3 it would not be possible to attach
a constraint to the type Wheel targeting only bag1. This is
because there is no selector starting at wheel1 containing
this bag only. Note that selwheel1 ((bag)) returns the set
{bag1 , bag2} with both bags. This was done on purpose
to evade symmetries. Our understanding is that if dis-
tinctions between objects are desirable, this information
should be included in the model, e.g., by having separate
ports as for the front and rear wheel.

In many scenarios it is desirable to configure multiple
instances of the same type simultaneously. Since we
require every configuration to be rooted, this might not
appear possible within our approach. However, one could
always add a new root type to the model, for example a
Fleet of bikes.

A shortcoming of our formalization is that we require
the attribute valuation function to be total, i.e., every
instantiated attribute variable needs to have a value as-
signed. In user requirements, though, it might be desir-
able to leave certain attributes undefined.

Further, there are user requirements which cannot be
expressed through an instantiation. For example, con-
sider Figure 2 and a user who wants all bags to be of a
certain color but does not care about the number of bags.
This would require adding a new constraint to the model.
Anyhow, we consider this to be more of a knowledge
engineering problem as any such option should only be
available if included in the model.

Compared to many other approaches that are tuned
for practical applications, our approach is more abstract.
This allows us to formally prove properties as we have
demonstrated with the monotonicity of the solution
space. Experience has shown that this is important when
working with ASP. In the future, we intend to investigate

what other properties our formalism possesses.
Partly due to this abstractness, we decided to start with

a simpler approach exluding a taxonomy and thus a form
of inheritance. However, we view both these concepts
as vital for efficiently modelling configuration problems
and we plan to extend our formalism to contain them.
This would probably require the following steps:

1. Introduce taxonomic ports representing a "super-
type" relation. Following [2], our acyclicity con-
dition would be extended to consider these ports
as well.

2. Adapt the definition of a valid instantiation. Now
the root object of the model graph does not nec-
essarily represent the object to be configured but
could be specialized to a subtype. There might not
even be a partonomic root anymore. In general,
it should be possible to start the configuration
at any node of the model graph which could be
expressed through user requirements and a dedi-
cated "root object" in the instantiation.

3. Types would inherit attributes and other types
of ports from their supertypes, i.e., constraint
satisfaction would have to be checked not only
for the type an object is mapped to but also for
all its supertypes.

4. A more difficult question is how to treat attributes
and (non-taxonomic) ports which appear more
than once for a set of supertypes or if this should
be prohibited.

Lastly, we note that in many examples a taxonomy only
appears in form of "specializations" (such as concrete
types and catalogs in [2]). This feature can be represented
in our formalism by adding table constraints (see for
example constraint 𝑐4 in Figure 2 describing the possible
wheels).

Further, we plan to further study connection ports by
working out examples. They are part of the literature [2]
and we view them as an important complement to parto-
nomic ports since they convey additional information
and allow to form cycles in the model graph. Consider
the configuration of a computer network. Here, a config-
uration might have identical parts like switches which
can be connected in numerous ways. We also intend to
investigate symmetry conditions for connection ports
which currently do not seem to be expressible within our
formalization of constraints.

On the implementation level, our full encoding cur-
rently supports table and comparison constraints. In the
literature other kinds such as requirement and incom-
patibility constraints often occur. We plan to study how
these can be represented in our formalism and to add
them to our implementation.

93

Acknowledgments
This work was partially funded by ZIM (Zentrales In-
novationsprogramm Mittelstand) of the German Federal
Ministry for Economic Affairs and Climate Action (grant
number: KK5291302GR1). We thank Joachim Baumeis-
ter, Richard Comploi-Taube, Andreas Falkner, Konstantin
Herud, Jochen Reutelshöfer and Gottfried Schenner for
their valuable feedback.

References
[1] R. Cunis, A. Günter, H. Strecker, Das

PLAKON-Buch, volume 266 of Infor-
matik Fachberichte, Springer-Verlag, 1991.
doi:10.1007/978-3-662-06485-6.

[2] U. Junker, Configuration, in: F. Rossi, P. van
Beek, T. Walsh (Eds.), Handbook of Constraint
Programming, Elsevier Science, 2006, pp. 837–873.
doi:10.1016/s1574-6526(06)80028-3.

[3] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen (Eds.),
Knowledge-Based Configuration: From Research to
Business Cases, Elsevier/Morgan Kaufmann, 2014.
doi:10.1016/C2011-0-69705-4.

[4] G. Brewka, T. Schaub, Zur Verwendung nichtmono-
toner Inferenztechniken bei der Konfiguration, in:
F. di Primio (Ed.), Methoden der Künstlichen In-
telligenz für Grafikanwendungen, Addison-Wesley,
1995, pp. 45–60. In German.

[5] V. Lifschitz, Answer Set Programming,
Springer-Verlag, 2019. doi:10.1007/
978-3-030-24658-7.

[6] M. Gebser, B. Kaufmann, T. Schaub, Conflict-
driven answer set solving: From theory to prac-
tice, Artificial Intelligence 187-188 (2012) 52–89.
doi:10.1016/j.artint.2012.04.001.

[7] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub,
Answer Set Solving in Practice, Synthesis Lectures
on Artificial Intelligence and Machine Learning,
Morgan and Claypool Publishers, 2012. doi:10.
1007/978-3-031-01561-8.

[8] M. Gebser, R. Kaminski, T. Schaub, aspcud: A Linux
package configuration tool based on answer set pro-
gramming, in: C. Drescher, I. Lynce, R. Treinen
(Eds.), Proceedings of the Second International
Workshop on Logics for Component Configuration
(LoCoCo’11), volume 65 of Electronic Proceedings
in Theoretical Computer Science (EPTCS), 2011, pp.
12–25. doi:10.4204/eptcs.65.2.

[9] A. Felfernig, A. Falkner, M. Atas, S. Erdeniz, C. Uran,
P. Azzoni, ASP-based knowledge representations
for IoT configuration scenarios, in: L. Zhang,
A. Haag (Eds.), Proceedings of the Nineteenth Inter-

national Configuration Workshop (CONF’17), 2017,
pp. 62–67.

[10] E. Gençay, P. Schüller, E. Erdem, Applications of
non-monotonic reasoning to automotive product
configuration using answer set programming, Jour-
nal of Intelligent Manufacturing 30 (2019) 1407–
1422. doi:10.1007/s10845-017-1333-3.

[11] J. Tiihonen, M. Heiskala, A. Anderson, T. Soini-
nen, WeCoTin – A practical logic-based sales con-
figurator, AI Communications 26 (2013) 99–131.
doi:10.3233/aic-2012-0547.

[12] J. Tiihonen, A. Anderson, VariSales, in: [3], 2014, pp.
309–318. doi:10.1016/B978-0-12-415817-7.
00026-8.

[13] T. Soininen, J. Tiihonen, T. Männistö, R. Sulo-
nen, Towards a general ontology of configura-
tion, Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing 12 (1998) 357–
372. doi:10.1017/s0890060498124083.

[14] A. Falkner, A. Ryabokon, G. Schenner, K. Shcheko-
tykhin, OOASP: connecting object-oriented and
logic programming, in: F. Calimeri, G. Ianni,
M. Truszczyński (Eds.), Proceedings of the Thir-
teenth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’15),
volume 9345 of Lecture Notes in Artificial Intelli-
gence, Springer-Verlag, 2015, pp. 332–345. doi:10.
1007/978-3-319-23264-5_28.

[15] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon,
C. Bagley, K. Wolter, Configuration knowledge
representation and reasoning, in: [3], 2014,
pp. 41–72. doi:10.1016/b978-0-12-415817-7.
00006-2.

[16] M. Gebser, R. Kaminski, B. Kaufmann, M. Lin-
dauer, M. Ostrowski, J. Romero, T. Schaub, S. Thiele,
Potassco User Guide, 2 ed., University of Potsdam,
2015. URL: http://potassco.org.

[17] S. Hahn, O. Sabuncu, T. Schaub, T. Stolzmann,
clingraph: ASP-based visualization, in: G. Gott-
lob, D. Inclezan, M. Maratea (Eds.), Proceedings of
the Sixteenth International Conference on Logic
Programming and Nonmonotonic Reasoning (LP-
NMR’22), volume 13416 of Lecture Notes in Artifi-
cial Intelligence, Springer-Verlag, 2022, pp. 401–414.
doi:10.1007/978-3-031-15707-3_31.

94

Interactive Configuration with ASP Multi-Shot Solving
Richard Comploi-Taupe1, Andreas Falkner1, Susana Hahn2,3, Torsten Schaub2,3 and
Gottfried Schenner1

1Siemens AG Österreich, Vienna, Austria
2University of Potsdam, Germany
3Potassco Solutions, Germany

Abstract
The area of product configuration has witnessed a growing demand for systems that can effectively guide users through the
configuration process. These systems facilitate interactivity during configuration by combining user actions with automatic
solving. In this paper, we present an API that fulfills the basic requirements of interactive configuration. Our implementation
is based on the OOASP framework for object-oriented configuration in Answer Set Programming (ASP), leveraging multiple
features of the ASP system clingo to dynamically introduce components.

1. Introduction
Product configuration has been one of the first successful
applications of Answer Set Programming (ASP [1, 2]) [3].
Nonetheless, more than 20 years later, its use in product
configurators is still challenging. One open challenge is
to allow for interactivity during configuration.

Industrial product configuration deals with large prob-
lems. For example, even small infrastructure projects may
contain thousands of components and hundreds of com-
ponent types. Such configurations are typically solved
step-by-step by combining interactive actions with au-
tomatic solving of sub-problems [4]. Configurator users,
such as engineers and sales people, expect a system that
guides them through the configuration process. Domain
experts provide the configuration model that defines such
a process and system.

Using a grounding-based formalism like ASP in this
context introduces the risk of a grounding bottleneck
[5] due to the large number of required components for
satisfying all requirements. The required domain size can
vary significantly and is not known beforehand, which
leads to the necessity of dynamically introducing new
components during the configuration process.

In this work, we present an Application Programming
Interface (API) to satisfy basic requirements for interac-
tive configuration [4]. Our implementation is based on
OOASP [6], a framework for representing object-oriented

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
" richard.taupe@siemens.com (R. Comploi-Taupe);
andreas.a.falkner@siemens.com (A. Falkner);
hahnmartinlu@uni-potsdam.de (S. Hahn);
torsten@cs.uni-potsdam.de (T. Schaub);
gottfried.schenner@siemens.com (G. Schenner)
� 0000-0001-7639-1616 (R. Comploi-Taupe); 0000-0002-2894-3284
(A. Falkner); 0000-0003-2622-2632 (S. Hahn); 0000-0002-7456-041X
(T. Schaub); 0000-0003-0096-6780 (G. Schenner)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

configurations in ASP. Additionally, we exploit multiple
features of the ASP system clingo1 [7] to provide interac-
tive functionalities.

After covering background on ASP, product configu-
ration and OOASP, and on our running example in Sec-
tion 2, we introduce our approach in detail in Section 3.
The paper concludes with a discussion in Section 4.

2. Background

2.1. Answer set programming
A logic program consists of rules of the form

a1;...;a𝑚 :- a𝑚+1,...,a𝑛,
not a𝑛+1,..., not a𝑜.

where each a𝑖 is an atom of form p(t1,...,t𝑘) and
all t𝑖 are terms, composed of function symbols and vari-
ables. For 1 ≤ 𝑚 ≤ 𝑛 ≤ 𝑜, atoms a1 to a𝑚 are often
called head atoms, while a𝑚+1 to a𝑛 and not a𝑛+1 to
not a𝑜 are also referred to as positive and negative body
literals, respectively. An expression is said to be ground,
if it contains no variables. As usual, not denotes (default)
negation. A rule is called a fact if 𝑚 = 𝑛 = 𝑜 = 1, nor-
mal if 𝑚 = 1, and an integrity constraint if 𝑚 = 0. In
what follows, we deal with normal logic programs only,
for which 𝑚 is either 0 or 1. Semantically, a logic pro-
gram induces a set of stable models, being distinguished
models of the program determined by the stable models
semantics [8].

To ease the use of ASP in practice, several extensions
have been developed. First of all, rules with variables
are viewed as shorthands for the set of their ground in-
stances. Further language constructs include conditional
literals and cardinality constraints [9]. The former are

1https://potassco.org/clingo

95

of the form2 a:b1,...,b𝑚, the latter can be written as3

s {d1;...;d𝑛} t, where a and b𝑖 are possibly negated
(regular) literals and each d𝑗 is a conditional literal; s
and t provide optional lower and upper bounds on the
number of satisfied literals in the cardinality constraint.
We refer to b1,...,b𝑚 as a condition. The practical
value of both constructs becomes apparent when used
with variables. For instance, a conditional literal like
a(X):b(X) in a rule’s body expands to the conjunction
of all instances of a(X) for which the corresponding
instance of b(X) holds. Similarly, 2 {a(X):b(X)} 4 is
true whenever at least two and at most four instances
of a(X) (subject to b(X)) are true. More sophisticated
examples are given in Section 3.

A particular convenience feature are anonymous vari-
ables, denoted uniformly by an underscore ‘_’. Each
underscore in a rule is interpreted as a fresh variable.
In turn, atoms with anonymous variables are replaced
by new atoms dropping these variables; the new atoms
are then linked to the original ones by rules expressing
projections.

Multi-shot solving allows for solving continuously
changing logic programs in an operative way. In clingo,
this can be controlled via an API for implementing reac-
tive procedures that loop on grounding and solving while
reacting, for instance, to outside changes or previous solv-
ing results. This is supported by two directives. First, a
program can be partitioned into several subprograms by
means of the directive #program; it comes with a name
and an optional list of parameters. Such subprograms can
then be grounded upon demand and added to the solver.
Second, #external directives allow for declaring atoms
whose truth value can be set via the API and/or rules that
may be added later on. This allows us to continuously
assemble ground rules evolving at different stages of a
reasoning process and to change program behavior by
manipulating the truth values of external atoms via the
API.

Full details on the input language of clingo along
with various examples can be found in the Potassco User
Guide [10].

2.2. Product Configuration and OOASP
Product Configuration as an activity produces the spec-
ification of an artifact that is assembled from instances
of given component types and that conforms to a given
set of constraints between those components. Compo-
nent types can have attributes, thus components can be
parametrized. Furthermore, components are related to
each other via part-of or is-a relationships [11]. In most

2In rule bodies, they are terminated by ‘;’ or ‘.’ [10].
3More elaborate forms of aggregates are obtained by explicitly

using function (e.g. #count) and relation symbols (e.g. <=) [10].

configuration problems, a dynamic number of compo-
nents plays an important role [12].

OOASP4 [6, 13] is an ASP-based framework to encode
and reason about object-oriented problems such as con-
figuration problems. It defines a Domain Description
Language (DDL) specific to the domain of object-oriented
models that can be represented by a modelling language
corresponding to a UML class diagram. OOASP-DDL de-
fines ASP predicates to encode models (classes, subclass
relations, associations, and attributes) and instantiations
(instances, is-a relations, instance-level associations, and
attribute values). Furthermore, it provides a uniform way
to encode (built-in and user-specific) constraints.

Table 1 shows the OOASP-DDL predicates for the en-
coding of models, and Table 2 shows the OOASP-DDL
predicates for the encoding of instantiations.5

OOASP constraints are defined using the predicate
ooasp_cv (“cv” stands for “constraint violation”). Rules
with head atoms of this predicate are used instead of
ASP constraints to enable configurations to be checked,
i.e., to derive which constraints are violated in a given
configuration (Listing 4). To enforce a configuration to be
consistent, a simple ASP constraint forbidding ooasp_cv
to be true can be added. An ooasp_cv atom contains
four terms: a unique constraint identifier, the identifier of
the faulty object, a string containing a message describing
the issue, and a list of additional explanatory terms.

OOASP distinguishes integrity constraints from
domain-specific constraints. The former are defined in
the OOASP framework itself and refer to issues such as
invalid values and violations of association cardinalities.
Domain-specific constraints can be defined by a user of
OOASP in the same format.

An instantiation (configuration) defined by the pred-
icates from Table 2 is complete if every object is an in-
stance of an instantiable class, and it is correct if no
constraint violations can be derived from it. We follow
the convention that only leaf classes (i.e., classes that
have no subclasses) are instantiable, so every object must
be an instance of a leaf class in a complete configuration.

Configuration is usually an interactive task, iteratively
involving user interactions (decisions) and automatic rea-
soning by a solver, e.g., an ASP solver [4]. The goal of our
work is to support interactive configuration in a frame-
work based on OOASP, because we think that its natural
way of representing subclasses, parts hierarchies, rich el-
ement properties, and dynamically created configuration
instances allows for understandable and precise product
modeling.

4https://github.com/siemens/OOASP
5We here present a version of OOASP-DDL that has already

evolved from the original definition [6] and that has also been slightly
simplified for this paper.

96

Table 1
OOASP-DDL predicates for the encoding of models

ooasp_class(C) C is a class
ooasp_subclass(SubC,SupC) SubC is a subclass of SupC
ooasp_assoc(A,C1,C1Min,C1Max,

C2,C2Min,C2Max)
A is an association in which each instance of the class C1 is associated to between
C2Min and C2Max instances of class C2, and each instance of C2 is associated
to between C1Min and C1Max instances of C1.

ooasp_attr(C,A,T) A is an attribute of class C with type T
ooasp_attr_enum(C,A,D) D is an element of the domain of attribute A of class C

Table 2
OOASP-DDL predicates for the encoding of instantiations

ooasp_isa(C,O) O is an object of class C
ooasp_isa_leaf(C,O) O is an object of leaf class C
ooasp_associated(A,O1,O2) Object O1 is associated to object O2 in association A
ooasp_attr_value(A,O,V) The attribute A of object O has value V

2.3. Running example
We use a typical hardware racks configuration problem
as the running example for this paper. For easier compar-
ison with non-incremental OOASP the running example
is an extension of the racks configuration paper used in
the original OOASP paper [6]. The UML class diagram
(Figure 1) shows all concepts and relations of the racks
knowledge base. This diagram was automatically gener-
ated by our Interactive API in integration with clingraph
[14] using a visualization encoding.

Additionally to the constraints implied by the UML
diagram, the following constraints hold for the domain:

• An ElementA/B/C/D requires exactly 1/2/3/4 ob-
jects of type ModuleI/II/III/IV

• Instances of ModuleI/II/III/IV must be required
by exactly one Element

• A SingleRack/DoubleRack has exactly 4/8 Frames
• A Frame containing a ModuleII must also contain

exactly one ModuleV

The running example captures the essence of a typical
configuration knowledge base in an industrial setting.
Of course, real life industrial knowledge bases are much
larger (>100 classes, associations, attributes). And the
constraints of the domain will vary considerable depend-
ing on additional requirements imposed by the customer,
regulations, geographic location, etc. Notice that the
knowledge base does not contain any restrictions on the
number of objects in a configuration or on the order in
which objects must be created.

Another property of these knowledge bases is that the
number of objects required for a solution is not known
beforehand. For example, suppose the user interactively
created 5 objects of type ModuleI. The user could assign
those modules to the same frame and assign the frame to

a rack. Or the user could assign the modules to different
frames and assign those to different racks. In any case, a
rack must be connected to at least four frames. Therefore,
the first configuration has 10 objects (5 modules, 4 frames,
1 rack), while the second, equally valid configuration has
30 objects (5 modules, 20 frames, 5 racks).

3. Interactive Configurator
Our Configuration API (CAPI) is implemented using
Python, relying heavily on multiple features provided by
clingo’s Python API, as well as the systems clorm6 and
clingraph. Clorm is a Python library providing an Object
Relational Mapping (ORM) interface to clingo, which we
use to map the OOASP predicates defining the knowledge
base and the configuration into Python classes. These
elements are then visualized as graphs (resembling UML
diagrams) using clingraph. For interactive configuration,
we created a scientific prototype User Interface (UI) using
ipywidgets that employed our CAPI functionalities.

The basic idea behind our approach is to modularize
the encodings so that the program can be built incre-
mentally as the number of instantiated objects in the
configuration increases based on user interaction. To
that end, we use the multi-shot capabilities of clingo
to solve these continuously changing logic programs.
This approach avoids re-grounding and benefits from
learned constraints by grounding and solving on demand.
More specifically, we defined subprograms that depend
on the identifier of each newly introduced object, namely
new_object. Therefore, whenever the domain size is
extended by a new object, all the rules referring to this
object are grounded. In this sense, our implementation

6https://github.com/potassco/clorm

97

Figure 1: Class diagram for the racks knowledge base generated by clingraph.

differs from the previous work [15], in which subpro-
grams were subject to domain-specific actions.

3.1. Interactive tasks
We introduce eight fundamental interactive tasks, derived
from [4] and adapted to our multi-shot setting, allowing
users to edit a partial configuration 𝒞𝒫 and construct a
complete configuration 𝒞𝒞 . First, the user can modify 𝒞𝒫
through the following interactive tasks:

T1. Setting and un-setting the type of an existing
object.

T2. Adding and removing associations between two
objects.

T3. Setting and un-setting values for attributes.

Such tasks are done using external atoms in clingo, so that
no re-grounding is required. Due to lack of space, we will
focus only on the encoding of task T3. Tasks T1 and T2
are encoded in a similar way. We show in Listing 1 how
the user input is handled for task T3. Line 1 corresponds
to clingo’s program directive indicating that the subpro-
gram depends on new_object. Thus, all the following
rules will be grounded on demand when a new object
is introduced. Lines 2 and 3 define an external atom
user(ooasp_attr_value(A,new_object,V)) for
each attribute A and value V of the new_object. Notice
that we need to generate all possible combinations
since the object can be assigned to any class. The truth
value of these externals will be set based on the user’s
selection. Finally, the rule in Lines 4 and 5 makes sure
that if the user selected a value for an attribute it will be
considered in the encoding.

T4. Extending the configuration with a new object.

As mentioned before, the grounding of subprograms
will exclusively occur when the user performs task T4.
Consequently, in the rest of the tasks the number of
objects will remain fixed. Note that the newly introduced

1 #program domain(new_object).
2 #external user(ooasp_attr_value(A,new_object,V)):
3 ooasp_attr_enum(_,A,V).
4 ooasp_attr_value(A,new_object,V) :-
5 user(ooasp_attr_value(A,new_object,V)).

Listing 1: User input

object will not have a type; its type will be set explicitly
by the user with T1 or by the system with T5.

Finally, we identified three reasoning tasks in which
solving is necessary.

T5. Using the current objects to generate 𝒞𝒞 from 𝒞𝒫
via choice rules.7

T6. Checking if 𝒞𝒫 is complete or if it violates any
constraints.

T7. Obtaining the list of available edit-options for the
user via brave reasoning.

These tasks are distinguished within the encoding via
externals. The truth values of these externals is con-
trolled internally depending on the task selected by the
user. In this case, one external atom guess states that
the guessing of objects’ types, associations and values is
active. Two additional externals check_permanent_cv
and check_potential_cv activate the integrity con-
straints for the two types of constraints. Constraints
are divided in this way, since we need to take into con-
sideration that we are building 𝒞𝒞 in an interactive and
incremental way, therefore some of these constraints
might be violated on 𝒞𝒫 but fixed once 𝒞𝒞 is reached.
The intuition for this decision can be taken from the
fields of Runtime Verification and Monitoring, where a
constraint is either satisfied, potentially violated (might or
might not remain a violation in the future) or permanently
violated (a violation in all possible futures). Potential con-
straint violations are those that can potentially be fixed by
adding more information in a later stage of the process.

7A choice rule is a rule with a cardinality constraint in the head.

98

1 1 { ooasp_attr_value(A,new_object,V):
2 ooasp_attr_enum(C,A,V) } 1 :-
3 ooasp_isa(C,new_object),
4 ooasp_attr(C,A,T),
5 ooasp_attr_enum(C,A,_),
6 guess.

Listing 2: Choice rule to guess the value of an attribute

1 :- ooasp_cv(CV,_,_,_),
2 not ooasp_potential_cv(CV),
3 check_permanent_cv.
4 :- ooasp_cv(CV,_,_,_),
5 ooasp_potential_cv(CV),
6 check_potential_cv.

Listing 3: Integrity constraints enforcing constraint
violations

For instance, a lower bound of an association that has
not been reached, or a value that is missing. These con-
straints are identified in the encoding with the predicate
ooasp_potential_cv. On the other hand, permanent
constraint violations refer to violations that can no longer
be fixed, such as upper bounds of an association or an
attribute value of a wrong type.

For task T5, guess, check_permanent_cv and
check_potential_cv are set to true in order to find a
complete and valid configuration 𝒞𝒞 . This is achieved by
using choice rules to generate possible values, types and
associations for the objects, which are activated by the
external guess. If no 𝒞𝒞 can be found with the current
number of objects the result of the task will be UNSATIS-
FIABLE. To illustrate this, Listing 2 shows the choice rule
to select a value for an attribute. The rule can be read as
follows: if the new object is of type C (Line 3), where type
C has an attribute A (Line 4) with some elements in the
domain (Line 5), and the guessing is active (Line 6), then
out of all the possible values for A choose a single value
V. Notice that this rule is also grounded incrementally
and uses the corresponding new_object.

For task T6, we set the externals
check_permanent_cv and check_potential_cv to
false so that all the ooasp_cv atoms are part of the
computed stable model, thus deriving the issues with
𝒞𝒫 . In Listing 3 we show the integrity constraints
handling the constraint violations, which are also
grounded incrementally. Lines 1 to 3 make sure
that no constraint violation is derived if the external
check_permanent_cv is true and the constraint
violation CV is not a potential but a permanent one.
Similarly, the second constraint (Lines 4 to 6) enforces
potential constraints when check_potential_cv is
true.

For task T7, we want to provide the user with valid
actions from T1, T2 and T3. To achieve this, po-
tential constraints are ignored by setting the external
check_potential_cv to false so that we allow con-

1 ooasp_potential_cv(no_val).
2 ooasp_cv(no_val,new_object,"Missing value for {}",(A,)) :-
3 ooasp_attr(C,A,T),
4 ooasp_attr_enum(C,A,_),
5 ooasp_isa(C,new_object),
6 not ooasp_attr_value(A,new_object,_).

Listing 4: Constraint violation of a missing value

straints of this type to be violated in 𝒞𝒫 while still getting
a satisfiable answer. However, the permanent constraints
should remain active since we want to discard anything
that can’t be fixed by further interaction with the system.
With this set, we use the brave reasoning capabilities of
clingo to obtain the union of all stable models, and thus,
all the possible options for types, values of attributes, and
associations.

As before, we use the attribute values to exemplify
the use of task T7 in Listing 4. The rule in Lines 2 to
6 derives the constraint violation no_val of having no
value set for an attribute. As expected, this is a potential
constraint (expressed in Line 1) since the user can later on
select the missing value. The constraint violation is then
derived for any attribute of the new_object that has no
corresponding value assigned via ooasp_attr_value.

Some other checks might depend on values that have
to be recomputed on every grounding step, such as
the arity of an association. In other words, if an ag-
gregate #count is used to compute the objects asso-
ciated to new_object , it will only count the objects
that are already grounded at that time. This means
that the arity computed in previous steps must be dis-
regarded. Therefore, we need an additional external
active(new_object) that indicates the current step
to know if the aggregate’s value is older and thus expired.
Notice that the current step corresponds to the object
identifier that is being grounded at that time.

T8. Extend 𝒞𝒫 incrementally to generate 𝒞𝒞
Given all these functionalities, finding the smallest 𝒞𝒞

that extends 𝒞𝒫 can be encapsulated into the combined
task T8. The program for task T8 will proceed following
an incremental approach: 𝒞𝒫 is extended with a new
object (T4) and then tries to generate 𝒞𝒞 (T5), these steps
are repeated until a 𝒞𝒞 is found.

3.2. Performance
Knowing about the huge solution space, we improved ef-
ficiency right from the beginning by including symmetry
breaking constraints which get rid of multiple symmetric
configurations. The two symmetries identified can be
found in Listing 5. Both symmetries correspond to
permutations of the classes assigned to objects. The
constraint in Lines 1 to 6 ensures that the classes
assigned to objects smaller than the new_object

99

1 :- ooasp_isa_leaf(C1,new_object),
2 ooasp_isa_leaf(C2,ID),
3 ID<new_object,
4 C1<C2,
5 not user(ooasp_isa_leaf(C1,new_object)),
6 not user(ooasp_isa_leaf(C2,ID)).

8 :- ooasp_isa_leaf(_,new_object),
9 not ooasp_isa_leaf(_,ID),

10 ooasp_isa(_,ID),
11 ID<new_object.

Listing 5: Symmetry breaking constraints

are also smaller. Notice that this is only applied to
decisions made by the solver, excluding assignments
made by the user (Lines 5 and 6). Otherwise the user
setting the class of an object (via T1) could lead to
unsatisfiability. The constraint in Lines 8 to 11 makes
sure that any objects left out from the configuration (with
no class assigned) are always those with larger ids. For
instance, the assignment {(1, 𝐶1), (2, undef), (3, 𝐶2)}
would be removed by the second constraint in
favor of {(1, 𝐶1), (2, 𝐶2), (3, undef)}. Similarly,
{(1, 𝐶1), (2, 𝐶2), (3, 𝐶1)} would not be valid due to
the first constraint, keeping the symmetric assignment
{(1, 𝐶1), (2, 𝐶1), (3, 𝐶2)}.

We performed some empirical tests in the system to
check the performance based on the running example
from Section 2.3. The aim of the first test was to gen-
erate a 𝒞𝒞 of size 41 with one RackSingle associated to
four Frames, each Frame with four associated Modules
with one corresponding Element. First, we extended 𝒞𝒫
with 41 objects via T4 where 18 of those objects were
selected to be of the Element class. Then we used task
T5 to find our expected 𝒞𝒞 . Overall, these steps took
7 seconds of grounding time and 3 seconds of solving.
At this point, any of the tasks T1, T2, T3, and T6 can
be done without delay. However, obtaining the list of
options with task T7 didn’t finish within 5 minutes. This
happened since the number of valid options is quite large
when a user has 23 objects without an associated class.
In practice we expect this to decrease with a more tightly
defined 𝒞𝒫 during the interaction. As a second test, we
analyzed task T8 by creating 𝑛 Element instances and
finding incrementally the corresponding 𝒞𝒞 . The results
can be found in Figure 2a for 𝑛 ∈ {8, 9, 10}. When we
increased 𝑛 to 11, the task didn’t finish within a 5 minute
time out. Looking closely at the performance for 𝑛 = 9
in Figure 2b, we can see that the issue lies on having to
prove unsatisfiability for domain sizes 9 to 22. Proving
unsatisfiability implies going trough all the search space
to make sure there is no answer, which is quite costly as
the domain increases. In our test, this is the case when
trying to find a non-existing 𝒞𝒞 with a domain size of 22
objects. This was not the case in our previous test where
we have all the required objects to obtain a satisfiable

answer in a single call, comparable to the solving time
taken for domain size 23 in Figure 2b.

3.3. User Interface Prototype
To give an impression of our prototype, we include
screenshots (Figures 3,4) of the UI rendered in a Jupyter
notebook for the racks examples from Section 2.3. This
UI has 6 sections. The section on the upper left corner
shows the current 𝒞𝒫 using clingraph. To the right, the
history of actions taken by the user is rendered as a list
in the History section. In our example, the user started
with the first two actions being the extension of the do-
main by two new objects. This is done via the button
in the Extend section below, corresponding to task T4.
Then, in steps 3 and 4, the user assigned classes to ob-
jects 1 and 2, respectively, using the Edit section. This
section employs T7 to generate a dropdown for each ob-
ject with the list of possible options (T1, T2, T3). Step 5
corresponds to T6, triggered by clicking the button in the
Check section. This action prints in red the constraint
violations found for each object. In this case, Object 2 (the
frame) violates the missing value constraint from List-
ing 4 and the lower-bound constraint, since it should be
associated with one rack. Similarly, Object 1 (the instance
of RackSingle) is violating the lower-bound constraint,
as well as a domain-specific constraint enforcing it to be
associated to exactly 4 frames. For the last task, namely
T5, the user must work on the Browse section of the UI.
By clicking the button labeled “Next solution”, the system
would perform task T5. However, since there is no 𝒞𝒞
with the current number of objects it would get an error.
As mentioned before, this is overcome by extending 𝒞𝒫
incrementally, which is done by task T8 in step 6 when
the user clicks on “Find incrementally” (Figure 4). As
a consequence, the system will internally find 𝒞𝒞 and
render it in the bottom right. In this clingraph image,
the values from 𝒞𝒫 will appear in green. As a next step,
the user could either browse through all the possible 𝒞𝒞
of the same size, or select the current 𝒞𝒞 as the new 𝒞𝒫
to be to be further edited. Notice that while browsing,
no options are shown in the Edit section. This happens
since we have a single clingo control object which is cur-
rently in the middle of solving, thus, it can’t generate the
brave consequences of T7.

4. Discussion
In this paper, we have presented an interactive config-
urator that enables engineers and salespeople, among
other configurator users, to incrementally build configu-
rations. Our contribution involves the development of an
API built upon the OOASP framework and the clingo sys-
tem. The OOASP framework provided us with a domain

100

(a) Times starting from 8, 9 and 10 Elements. (b) The times for each call to task T5 for the given domain size,
starting from 9 Elements.

Figure 2: Times for task T8 (Extending incrementally)

Figure 3: UI for interactive configuration generated with ipywidgets rendered in a Jupyter notebook.

description language to encode models, instances, and so-
lutions, while clingo’s multi-shot capabilities allowed us
to dynamically extend the configuration by adding com-
ponents on demand. The integration of this multi-shot
approach to interactive configuration distinguishes our
approach from previous work.

To fulfill the basic requirements of interactive config-
uration, we identified and implemented eight distinct
tasks, which we described in detail. To demonstrate the
functionality of our API, we developed a prototype user
interface and showcased the step-by-step creation of a
configuration using our running example. As the UI is

101

Figure 4: UI for interactive configuration generated with ipywidgets rendered in a Jupyter notebook. Where the user is
browsing the extensions for 𝒞𝒫 into 𝒞𝒞 .

currently in a prototypical stage, gathering real user feed-
back remains a future goal for subsequent versions of
the system. To assess the performance of the system, we
conducted empirical tests and identified the need for fur-
ther improvements. In particular, we boosted efficiency
by incorporating symmetry-breaking constraints.

However, we also encountered performance issues
with our incremental approach when dealing with larger
instances, which warrants future research. More specifi-
cally, we plan to explore alternative methods for extend-
ing the configuration beyond the one-by-one incremental
process. For instance, we are interested in investigating
scheduling techniques [16] and pre-computing the min-
imal number of required objects [17]. Additionally, we
aim to enhance usability by incorporating additional ad-
vanced features, such as linear domains, which enable
more sophisticated reasoning in the configuration pro-
cess.

References
[1] V. Lifschitz, Answer Set Programming, 2019. doi:10.

1007/978-3-030-24658-7.
[2] M. Gelfond, Y. Kahl, Knowledge Representation,

Reasoning, and the Design of Intelligent Agents:

The Answer-Set Programming Approach, Cam-
bridge University Press, New York, NY, USA, 2014.

[3] T. Soininen, I. Niemelä, J. Tiihonen, R. Sulonen,
Representing configuration knowledge with weight
constraint rules., in: A. Provetti, T. Son (Eds.), Pro-
ceedings of the AAAI Spring Symposium on An-
swer Set Programming (ASP’01), AAAI/MIT Press,
2001, pp. 195–201. URL: http://www.cs.nmsu.
edu/%7Etson/ASP2001/20.ps.

[4] A. Falkner, A. Haselböck, G. Krames, G. Schenner,
H. Schreiner, R. Taupe, Solver requirements for
interactive configuration. 26 (2020) 343–373. doi:10.
3897/jucs.2020.019.

[5] T. Eiter, W. Faber, M. Fink, S. Woltran, Com-
plexity results for answer set programming with
bounded predicate arities and implications, Ann.
Math. Artif. Intell. 51 (2007) 123–165. doi:10.1007/
s10472-008-9086-5.

[6] A. Falkner, A. Ryabokon, G. Schenner, K. Shcheko-
tykhin, OOASP: connecting object-oriented and
logic programming, in: F. Calimeri, G. Ianni,
M. Truszczyński (Eds.), Proceedings of the Thir-
teenth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’15),
volume 9345 of Lecture Notes in Artificial Intelli-

102

gence, Springer-Verlag, 2015, pp. 332–345. doi:10.
1007/978-3-319-23264-5_28.

[7] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub,
Multi-shot ASP solving with clingo, Theory and
Practice of Logic Programming 19 (2019) 27–82.
doi:10.1017/S1471068418000054.

[8] M. Gelfond, V. Lifschitz, Logic programs with clas-
sical negation, in: D. Warren, P. Szeredi (Eds.),
Proceedings of the Seventh International Confer-
ence on Logic Programming (ICLP’90), MIT Press,
1990, pp. 579–597.

[9] P. Simons, I. Niemelä, T. Soininen, Extending and
implementing the stable model semantics, Artificial
Intelligence 138 (2002) 181–234.

[10] M. Gebser, R. Kaminski, B. Kaufmann, M. Lin-
dauer, M. Ostrowski, J. Romero, T. Schaub, S. Thiele,
Potassco User Guide, 2 ed., University of Potsdam,
2015. URL: http://potassco.org.

[11] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen (Eds.),
Knowledge-Based Configuration – From Research
to Business Cases, Morgan Kaufmann, Boston,
2014. doi:10.1016/B978-0-12-415817-7.
00029-3.

[12] A. A. Falkner, G. Friedrich, A. Haselböck, G. Schen-
ner, H. Schreiner, Twenty-five years of successful
application of constraint technologies at siemens,
AI Mag. 37 (2016) 67–80. doi:10.1609/aimag.
v37i4.2688.

[13] A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe,
E. Teppan, Industrial applications of answer set
programming, Künstliche Intelligenz 32 (2018) 165–
176. doi:10.1007/s13218-018-0548-6.

[14] S. Hahn, O. Sabuncu, T. Schaub, T. Stolzmann,
clingraph: ASP-based visualization, in: G. Gott-
lob, D. Inclezan, M. Maratea (Eds.), Proceedings of
the Sixteenth International Conference on Logic
Programming and Nonmonotonic Reasoning (LP-
NMR’22), volume 13416 of Lecture Notes in Artifi-
cial Intelligence, Springer-Verlag, 2022, pp. 401–414.
doi:10.1007/978-3-031-15707-3_31.

[15] R. Comploi-Taupe, G. Francescutto, G. Schenner,
Applying incremental answer set solving to product
configuration, in: Proceedings of the 26th ACM
International Systems and Software Product Line
Conference – Volume B, Association for Computing
Machinery, New York, NY, USA, 2022, pp. 150–155.
doi:10.1145/3503229.3547069.

[16] Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero,
T. Schaub, plasp 3: Towards effective ASP plan-
ning, in: M. Balduccini, T. Janhunen (Eds.), Proceed-
ings of the Fourteenth International Conference on
Logic Programming and Nonmonotonic Reasoning
(LPNMR’17), volume 10377 of Lecture Notes in Artifi-
cial Intelligence, Springer-Verlag, 2017, pp. 286–300.
doi:10.1007/978-3-319-61660-5_26.

[17] M. Aschinger, C. Drescher, G. Gottlob, H. Vollmer,
Loco – A logic for configuration problems, ACM
Trans. Comput. Log. 15 (2014) 20:1–20:25. doi:10.
1145/2629454.

103

PERFECT: PErformant and Robust read-to-fly FlEet
ConfiguraTion: from Robot to Mission Plan⋆

Elise Vareilles1,∗,†, Stéphanie Roussel2,† and Gauthier Picard2,†

1ISAE SUPAERO, University of Toulouse, 10, avenue Édouard-Belin BP 54032 - 31055 Toulouse CEDEX 4, France
2ONERA / DTIS, University of Toulouse, 2 Av. Edouard Belin, 31000 Toulouse, France

Abstract
With the increasing autonomy of aerial, ground and underwater robots, fleets of robots are now being used for many types of
missions, such as exploration, rescue, disaster relief or civil and military security. Some of these applications require fleets of
heterogeneous robots, i.e., with different capabilities, different means of mobility and different equipment, which may or
may not be coordinated autonomously to carry out the missions for which the fleet is dedicated. The problem of multi-level
configuration of a fleet of heterogeneous robots and the scientific issues raised by such a problem are explored in this short
article.

Keywords
Configuration, Multi-agent Systems, Operational Research, Performance, Robustness

1. Introduction
We present here a prospective application of configura-
tion to a heterogeneous robot fleet (or swarm). This very
problem has been the subject of a joint project between
ONERA Toulouse France and ISAE SUPAERO France.

The structure of the article is as follows. The context of
our study topic is presented in Section 2. Then, because
multi-level configuration is a complex and quiet new field,
some open research questions are presented in Section 3.

2. Background and Research
Statement

With the increasing autonomy of aerial, ground and un-
derwater robots, fleets of robots are now being used for
many types of missions. Examples include package de-
livery, flying taxis, field exploration, rescue and disaster
relief. More and more applications require fleets of het-
erogeneous robots, e.g., with different capabilities such
as detect, communicate, observe, move, etc. For example,
an exploration mission may require the collaboration of

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open elise.vareilles@isae-supaero.fr (E. Vareilles);
stephanie.roussel@onera.fr (S. Roussel); gauthier.picard@onera.fr
(G. Picard)
GLOBE https://pagespro.isae-supaero.fr/elise-vareilles/ (E. Vareilles);
https://onera.academia.edu/SRoussel (S. Roussel);
https://gauthier-picard.info/ (G. Picard)
Orcid 0000-0001-6269-8609 (E. Vareilles); 0000-0001-7033-555X
(S. Roussel); 0000-0002-9888-9906 (G. Picard)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ground robots with at least the ability to move and com-
municate, and aerial robots with at least the ability to
observe and communicate. The success of a multi-robot
mission depends, among other things, on the configura-
tion of the fleet carrying out the mission [1].

This article examines the problem of multi-level config-
uration of robot fleets. By multi-level configuration, we
mean the simultaneous configuration of each robot (first
layer) and the robot fleet itself (second layer) in order to
perform the dedicated missions in a high-performance
and robust manner (third layer). That multi-level con-
figuration problem requires an analysis of the relation-
ships between these three levels of configuration, both
upstream in fleet composition and downstream in fleet
operation.

By configuration, we mean:

1. for each robot : the selection of its equipment and
capabilities,

2. for the robot fleet : its composition, i.e., the num-
ber and type of each robot, and its layout. By
layout, we mean the architecture of the swarm:
cloud, diamond, rung refused, etc.

3. and for the missions: the set of missions that the
robot fleet can perform by its reconfiguration.

This multi-level configuration problem raises numer-
ous research issues, such as (1) the representation/mod-
elling of the configuration knowledge (compact mod-
elling language), (2) the elicitation of constraints (what is
allowed or forbidden) and criteria (what is preferred) that
apply both to the fleet configuration and to each robot
in it, and (3) the development of algorithms to generate
optimal or at least good quality solutions.

It is generally expected that a robot fleet performs well
and is robust during the mission execution. For example,

104

1. Selection and
configuration
of each robot

2. Fleet
configuration
and layout

3. Robust
mission plan

and performance
evaluation

Constraints

Criteria

Constraints

Criteria

Constraints

Criteria

Target missions

Mission 1Mission 1Mission 1

Figure 1: Multi-level configuration problem steps

for a parcel delivery mission, the performance of the
fleet can be defined by the time required to complete all
deliveries, and its robustness can be defined by the ability
of the fleet to complete the mission despite the failure of
one or more robots, with the least loss of performance.
Assessing the performance and/or robustness of a fleet
for a given configuration generally involves generating
one ormoremission plans for the fleet and then analysing
the metrics associated with these plans. The generation
of such plans is a combinatorial problem by itself.

Here a mission plan consists in the allocation of the
different mission tasks to the robots and their scheduling,
meeting the constraints (time, resource availability, etc.)
and optimising the performance and/or robustness cri-
teria (mission duration, minimisation of resources used,
contingency management, etc.). For example, determin-
ing the minimum time required to deliver parcels using
a given number of robots whose capacities are fixed a
priori is a hard problem (NP-complete problem of vehicle
rounds [2])). Similarly, planning problems with the pres-
ence of uncertainty constitute a vast subject of research
([3, 4]).

In practice, the performance and robustness of a fleet
for its mission is often approximated at the time of con-
figuration. It is only after the fleet is configured that a
powerful, robust plan for the mission is generated, allow-
ing performance and robustness to be assessed in detail.
However, this sequential aspect can lead to sub-optimal
solutions. As illustrated in Fig. 1, the performance and ro-
bustness analysis can lead to a modification of some robot
configuration, which implies going through a whole new
configuration cycle. In the general case, there can be
numerous iterations before reaching satisfactory results
for each configuration level. For example, an undersized
or poorly configured fleet can have a significant impact
on mission performance or even cause a mission to fail.
On the other hand, some missions may require specific
fleet configurations and/or specific robot configurations
to meet performance objectives. For instance, a rescue
mission may require specific communication capabilities
for certain robots acting as routers. Note that some re-

search deals simultaneously with the configuration of
a fleet and its optimal planning ([5, 6, 7, 8]). However,
the associated configuration problem is weakly combi-
natorial in the sense that it is possible to enumerate all
configurations at the time of mission planning.

In this work, we aim to address the performance and
robustness constraints and criteria right from the fleet
configuration phase, in cases where the configuration is
complex. More specifically, given one or more mission
types for the fleet with target performance and robust-
ness and associated robot capabilities, a set of possible
equipment with their compatibility constraints and the
relationships between equipment and robot capabilities,
we aim to define the number of robots that make up
the fleet and the configuration of each robot so as to
achieve the desired performance and robustness targets.
The problem then consists in exploring the space of con-
figurations, guided by the performance and robustness
evaluation.

This problem can be approached in several ways. First,
there is the question of how to express knowledge, con-
straints and preferences, both from the point of view of
fleet configuration and from the point of view of per-
formance and robustness in the context of the [9] mis-
sion. Approaches such as constraint programming and
multi-agent modelling [10] can be used. Appropriate so-
lution strategies must then be developed. One possible
approach would be to take inspiration from bi-level opti-
misation ([11, 12, 13]) and define one level dedicated to
configuration and another to performance or robustness
evaluation. The challenge is then to allow the levels to
interact and guide each other towards optimal solutions.
Several algorithmic approaches can be used: constraint
programming, local search, metaheuristics and possible
coupling with learning-based strategies. The approaches
developed in the project will be validated by experiments
on multi-robot problems that are representative of the
applications dealt with at ONERA.

3. Research Questions
In order to address the multi-level configuration problem
described above, three main scientific questions arise:

• RQ1: What is the formal modelling of this
multi-robot fleet configuration problem?
More specifically, the knowledge base in input
to the problem must contain all the knowledge
needed to solve the problem. In particular, all the
following elements should be formalized:

– the description of the platforms and the
fleet,

– the constraints and objectives associated
with this equipment and the fleet,

105

– the capabilities required to solve the mis-
sion and the links between equipment and
capabilities,

– definitions of performance and robustness
for the mission(s).

It should be noted that it is also possible to con-
sider the organisational aspects of the fleet in the
configuration. For instance, a robot fleet for a
field exploration mission could be organized fol-
lowing a centralized or decentralized scheme. In
the first case, it means that one robot plays a cen-
tral role and must therefore have the correspond-
ing capacities such as the ability to communicate
with all other robots. In the second case, robots
must have their own planning decision module
and should therefore be equipped accordingly.

• QS2: What types of approaches and algo-
rithms are effective in solving the multi-
robot fleet configuration problem? This ques-
tion can be broken down into a number of sub-
problems:

1. How can configuration and multi-agent
system approaches be combined to define
the configuration of the multi-robot fleet?

2. How can robustness and performance in-
dicators be used to guide the configuration
of multi-robot fleets?

3. How can the multi-robot fleet and mission
plans be defined simultaneously to quickly
converge to a good solution?

4. How can we integrate the notion of uncer-
tainty into the different levels of decision
making and assess its impact on the quality
of the proposed solutions?

These algorithmic strategies may vary depending
on whether we are considering a single-criteria
or multi-criteria problem, and whether we are
searching for optimal or non-optimal solutions.
In the case of searching for non-optimal but good
quality solutions, there is also the question of the
distance to optimality and the calculation of good
bounds for evaluating this distance.

• QS3: How will the proposals be evaluated
and validated on realistic case studies? This
will involve not only the implementation of the
defined algorithms, but also their evaluation on
concrete data sets. Depending on the type of
mission under consideration, there will be issues
of re-use and adaptation of data sets, or their
generation, as well as simulation requirements.

Acknowledgments
The authors would like to thank the ONERA, ISAE-

SUPAERO and ENAC Federation for its support of this
work.

References
[1] S. Mittal, F. Frayman, Towards a generic model

of configuraton tasks, in: Proceedings of the 11th
International Joint Conference on Artificial Intel-
ligence - Volume 2, IJCAI’89, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1989, p.
1395–1401.

[2] A. O. Adewumi, O. J. Adeleke, A survey of recent
advances in vehicle routing problems, International
Journal of System Assurance Engineering and Man-
agement 9 (2018) 155–172.

[3] J. Blythe, An overview of planning under uncer-
tainty, Artificial intelligence today (1999) 85–110.

[4] T. Chaari, S. Chaabane, N. Aissani, D. Trentesaux,
Scheduling under uncertainty: Survey and research
directions, in: 2014 International Conference on
Advanced Logistics and Transport (ICALT), 2014,
pp. 229–234. doi:10.1109/ICAdLT.2014.6866316.

[5] G. F. List, B. Wood, L. K. Nozick, M. A. Turn-
quist, D. A. Jones, E. A. Kjeldgaard, C. R. Law-
ton, Robust optimization for fleet planning un-
der uncertainty, Transportation Research Part
E: Logistics and Transportation Review 39 (2003)
209–227. URL: https://www.sciencedirect.com/
science/article/pii/S1366554502000261. doi:https:
//doi.org/10.1016/S1366-5545(02)00026-1.

[6] R. F. Lemme, E. F. Arruda, L. Bahiense, Opti-
mization model to assess electric vehicles as an
alternative for fleet composition in station-based
car sharing systems, Transportation Research
Part D: Transport and Environment 67 (2019)
173–196. URL: https://www.sciencedirect.com/
science/article/pii/S1361920918304656. doi:https:
//doi.org/10.1016/j.trd.2018.11.008.

[7] R. Pinto, A. Lagorio, R. Golini, Urban freight fleet
composition problem, IFAC-PapersOnLine 51 (2018)
582–587. URL: https://www.sciencedirect.com/
science/article/pii/S2405896318315064. doi:https:
//doi.org/10.1016/j.ifacol.2018.08.381,
16th IFAC Symposium on Information Control
Problems in Manufacturing INCOM 2018.

[8] Şule Yıldırım, B. Yıldız, Electric bus fleet
composition and scheduling, Transportation
Research Part C: Emerging Technologies 129 (2021)
103197. URL: https://www.sciencedirect.com/
science/article/pii/S0968090X21002126. doi:https:
//doi.org/10.1016/j.trc.2021.103197.

[9] A. Felfernig, L. Hotz, C. Bagley, J. Tiiho-
nen, Knowledge-based Configuration – From Re-
search to Business Cases, Morgan Kaufmann

106

Publishers, United States, 2014. doi:10.1016/
B978-0-12-415817-7.00029-3.

[10] G. Weiss, Multiagent Systems, The MIT Press, 2013.
[11] C. Lei, W.-H. Lin, L. Miao, A two-stage ro-

bust optimization approach for the mobile facil-
ity fleet sizing and routing problem under un-
certainty, Computers & Operations Research 67
(2016) 75–89. URL: https://www.sciencedirect.com/
science/article/pii/S0305054815002178. doi:https:
//doi.org/10.1016/j.cor.2015.09.007.

[12] H. R. Sayarshad, R. Tavakkoli-Moghaddam, Solving
a multi periodic stochastic model of the rail–car
fleet sizing by two-stage optimization formula-
tion, Applied Mathematical Modelling 34 (2010)
1164–1174. URL: https://www.sciencedirect.com/
science/article/pii/S0307904X09002340. doi:https:
//doi.org/10.1016/j.apm.2009.08.004.

[13] P. Pitiot, M. Aldanondo, E. Vareilles, P. Ga-
borit, M. Djefel, S. . Carbonnel, Concurrent
product configuration and process planning,
towards an approach combining interactiv-
ity and optimality, International Journal of
Production Research 51 (2013) 524–541. URL:
https://doi.org/10.1080/00207543.2011.653449.
doi:10.1080/00207543.2011.653449.
arXiv:https://doi.org/10.1080/00207543.2011.653449.

107

Construction of Decision Diagrams for Product
Configuration
Maxim Popov1,2, Tomáš Balyo1, Markus Iser2,3 and Tobias Ostertag1,∗

1CAS Software AG, CAS-Weg 1 - 5, 76131 Karlsruhe, Germany
2Karlsruhe Institute of Technology (KIT), KIT-Department of Informatics, Karlsruhe, Germany
3University of Helsinki, Department of Computer Science / HIIT, Helsinki, Finland

Abstract
Knowledge compilation is a well-researched field focused on translating propositional logic formulas into efficient data
structures that allow polynomial-time online queries related to the SAT problem. Knowledge compilation techniques can be
used to partition product configuration tasks into two distinct phases: fast online processing and slow offline preprocessing.
Binary Decision Diagrams (BDDs) are widely studied in this area and provide a graph representation of Boolean formulas.
However, BDD construction can be time-consuming, particularly for large instances, as their size grows exponentially with
the number of variables. This paper explores methods to improve BDD construction time, including optimizing variable
ordering. The evaluation involves applying these techniques to formulas in Rich Conjunctive Normal Form, comparing the
results with Sentential Decision Diagrams. The experiments use CAS Software AG benchmarks.

Keywords
Configuration, Knowledge Compilation, Decision Diagrams

1. Introduction
Propositional logic is a common form of representing real-
life logical relations and rules in a way that can easily be
used in computer. The following example demonstrates
how Boolean formulas are used in the area of product
configuration:

Example 1.1. Suppose a company selling bikes offers
various configurations, where selecting one component
(i.e., bike frame) can limit choices for other components
(i.e., wheels) due to compatibility constraints. These con-
straints can be represented as Boolean formulas.

𝑅1 = ¬F1 ∨ ((W ∨ B) ∧ ¬BL ∧ ¬G) (1)

Each variable in Equation 1 is assigned a value of true
if the option is chosen. F1 is the variable representing
the frame option, andW, B, G, BL are the variables rep-
resenting the frame colors white, blue, green, and black
respectively. The formula represents the rule that if a
frame 1 is chosen, only the colors white and blue can be
selected.

Configuration of complex products with many options
may be a computationally hard problem that also can be

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
∗Corresponding author.
Envelope-Open maxim.popov@campus.tu-berlin.de (M. Popov);
markus.iser@kit.edu (M. Iser); tobias.ostertag@cas.de (T. Ostertag)
Orcid 0000-0003-2904-232X (M. Iser); 0000-0003-3294-3807
(T. Ostertag)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

formulated as a Boolean Satisfiability Problem (SAT). SAT
involves determining if a Boolean formula has satisfying
assignments. While the problem is NP-complete, it can
often be solved online using SAT solvers. Another way
is to use knowledge compilation methods, whereby the
solutions first get prepared and stored in a data struc-
ture offline and then can efficiently be retrieved online.
Binary Decision Diagrams (BDDs) and Ordered Binary
Decision Diagrams (OBDDs) are well-known knowledge
compilation methods that represent Boolean formulas
as binary trees. They were used in formal verification
and were proved to be efficient in analysing systems with
large amount of states [1].

Given the OBDD representation of a Boolean formula,
satisfiability can be checked in constant time, solutions
can be found in linear time, and models can be counted
in polynomial time [2]. However, the size of the BDD as
well as its construction time can be exponential in the
number of variables.
For the product configuration, it means that config-

uration rules can be efficiently verified in the runtime,
but we have to consider potentially long preprocessing
time. Therefore, the reduction of BDD is essential for im-
proving performance and can be achieved by optimizing
variable ordering.

In this paper, we overview existing approaches for
minimizing BDD size, apply them to RCNF formulas and
introduce modifications of existing approaches: variable
frequency and M-FORCE constraint ordering heuristics
and construction strategies. We evaluate existing as well
as our heuristics using real-world configurations and
compare them to existing approaches. Lastly, we briefly
present our modification of ordering heuristics for Sen-

108

tential Decision Diagrams (SDDs) construction, which is
a recently developed type of decision diagram that is a
superset of OBDDs.
Chapter 2 presents some basic definitions that will

be used throughout the work. Chapter 3 provides some
insights into related works. Chapter 4 presents our or-
dering heuristics. Chapter 5 presents the libraries used
to implement our approach and which also serve to mea-
sure baseline performance. Finally, Chapter 6 provides
evaluation results for the described methods.

2. Preliminaries
This chapter contains definitions and examples of main
concepts used in this work.

2.1. Boolean Formulas
This section contains definitions and notions including
canonical normal forms of Boolean formulas.

Definition 2.1. Conjunctive Normal Form (CNF) is a
conjunction of clauses ⋀𝑖 𝑐𝑖, where each clause 𝑐𝑖 is a
disjunction of literals ⋁𝑗 𝑙𝑗. A CNF clause is satisfied if
at least one of its literals is satisfied. A CNF formula is
satisfied if all of its clauses are satisfied.

Definition 2.2. Disjunctive Normal Form (DNF) is a
disjunction of terms ⋀𝑖 𝑐𝑖, where each term 𝑐𝑖 is a con-
junction of literals ⋁𝑗 𝑙𝑗. A DNF term is satisfied if all of
its literals are satisfied. A DNF formula is satisfied if at
least one of its terms is satisfied.

Definition 2.3. An At-Most-One (AMO) constraint is a
Boolean formula that takes a set of literals as an input and
outputs true (is satisfied) if and only if maximal one of
the input literals is satisfied. For a set of literals {𝑙1, ..., 𝑙𝑛},
we use the following notation for the AMO constraint:
𝐴𝑀𝑂(𝑙1, ..., 𝑙𝑛)

Definition 2.4. A Rich Conjunctive Normal Form
(RCNF) formula is a conjunction of constraints, where
a constraint can be a DNF formula, a disjunction of lit-
erals (equal to the CNF clause) or an AMO constraint.
A RCNF formula is satisfied if all of its constraints are
satisfied. Basically, RCNF is an extension of a CNF that
allows more types of constraints, and thus allows smaller
representation of a complex configuration rules .

2.2. The Boolean Satisfiability Problem
Let {𝑥1, ..., 𝑥𝑘} be a set of Boolean variables and 𝑞 be a
propositional logic formula in CNF that contains only
literals of {𝑥1, ..., 𝑥𝑘}. Formula 𝑞 is satisfiable if and only
if there exists a set of variable assignments, so that 𝑞 is
true. The Boolean Satisfiability Problem (SAT) is solved

if either the satisfying assignment of the formula is found
or it is determined that the formula is not satisfiable.

2.3. Binary Decision Diagram
This section is based on the Handbook of Model Check-
ing [3].

Definition 2.5. A Binary Decision Diagram (BDD) rep-
resents a Boolean function as an acyclic directed graph,
with the nonterminal vertices labeled by Boolean vari-
ables and the leaf vertices labeled with the values 1 and 0.
Each nonterminal vertex 𝑣 has two outgoing edges: ℎ𝑖(𝑣),
corresponding to the case where its variable has value 1,
and 𝑙𝑜(𝑣), corresponding to the case where its variable
has value 0.

Definition 2.6. An Ordered Binary Decision Diagram
(OBDD) is a BDD for which an additional ordering rule
applies: for each nonterminal vertex 𝑣 associated with
variable 𝑥𝑖 and a vertex 𝑢 ∈ {𝑙𝑜(𝑣), ℎ𝑖(𝑣)} associated with
variable 𝑥𝑗, we must have 𝑖 < 𝑗

An OBDD can be reduced by eliminating redundant
nodes and merging terminal and duplicate nodes. The
result of such reduction is the Reduced Ordered BDD
(ROBDD) [3]. This reduction can be performed in the
time linear in the size of the original graph [4].
ROBDDs serve as a canonical form for Boolean func-

tions, meaning that, for a given variable ordering, ev-
ery Boolean function has a unique representation as a
ROBDD. The construction of a ROBDD is essential to
keep the BDD as small as possible, as the complexity of
most algorithms that utilize BDD is dependent on the
number of nodes/length of paths in the tree. In this paper,
every mention of BDD refers to ROBDD.
Given a BDD of a function, we can answer these and

other questions related to a SAT problem for a given
instance. The function is satisfiable, if it does have a
terminal node labeled with value 1. We can find a ran-
dom solution for the formula by traversing the diagram
from root toward the ”1” leaf. The complexity of such
algorithm is 𝑂(ℎ), where h is the height of the BDD. We
can count the number of solutions by traversing the BDD
and counting the paths. The complexity is 𝑂(𝑛), where 𝑛
is the number of nodes. [2, 3]

The common strategy for BDD frameworks is to divide
an overall function into smaller functions and creating
BDDs bottom-up. We start by creating BDDs for single
literals, and then subsequently use the BDDs from previ-
ous steps to create new ones by applying operations like
AND, OR, XOR. The generalization of these operations
is called Apply algorithm. The algorithm creates a BDD
that represents the given result of applying the operation
between the formulas of input BDDs. The overall time
complexity of an Apply operation is 𝑂(𝑁𝑢 × 𝑁𝑣), where

109

𝑁𝑢 and 𝑁𝑣 are the number of vertices in BDDs where
vertices 𝑢 and 𝑣 respectively are the root nodes of input
trees.

A BDD requires a defined variable ordering that will be
followed along all paths of a diagram. The size of a BDD
depends heavily on the ordering of input variables. Some
functions can rise in size from linear to exponential in the
number of variables due to a bad ordering. However, the
problem of finding an optimal variable ordering to con-
struct a minimum-size BDD is proven to be NP-complete
and some functions don’t have an optimal ordering [5].
Thus, instead of computing an optimal variable ordering,
is a common approach to use heuristics to generate a
good ordering and use it during BDD construction.

2.4. Sentential Decision Diagram
This section is based on the work of Darwiche (2011) [6].

Sentential Decision Diagram (SDD) is a more recent
technique of representing of propositional knowledge
bases. SDDs are a strict superset of OBDDs and are in-
spired by two discoveries: structured decomposability
and strongly deterministic decompositions.
To explain SDDs, we first define the decomposition

that is used to construct this type of decision diagram
and the we define the important notion of vtrees.

Definition 2.7. Consider a Boolean function 𝑓 (𝑋 , 𝑌)
with non-overlapping variables 𝑋 and 𝑌. If 𝑓 = (𝑝1(𝑋) ∧
𝑠1(𝑌)) ∨ ... ∨ (𝑝𝑛(𝑋) ∧ 𝑠𝑛(𝑌)) then {(𝑝1, 𝑠1), ..., (𝑝𝑛, 𝑠𝑛)} is
called a (𝑋 , 𝑌)-decomposition of function 𝑓. We call each
pair (𝑝𝑖, 𝑠𝑖) an element of the decomposition, 𝑝𝑖 a prime
and a 𝑠𝑖 sub. If 𝑝𝑖 ∧ 𝑝𝑗 = false for 𝑖 ≠ 𝑗 the decomposition
is called strongly deterministic on 𝑋.

Definition 2.8. A vtree for variables 𝑋 is a full binary
tree whose leaves are in one-to-one correspondence with
the variables in 𝑋.

The vtree is used to recursively decompose a given
Boolean function starting at the root of the tree. The
left subtree of each node corresponds to the X vari-
ables, and the right subtree to Y variables of the (𝑋 , 𝑌)-
decomposition. The SDD representation is then based on
a recursive application of the presented decomposition
technique. The formal definition of this operation is as
follows:

Definition 2.9. Notation: ⟨.⟩ denotes a mapping from
SDDs into Boolean functions. 𝛼 is an SDD that respects
vtree 𝑣 if:

• 𝛼 = ⊥ or 𝛼 = ⊤
• 𝛼 = 𝑋 or 𝛼 = ¬𝑋 and 𝑣 is a leaf with variable 𝑋
• 𝛼 = {(𝑝1, 𝑠1), ..., (𝑝𝑛, 𝑠𝑛)}, 𝑣 is an internal node,
𝑝1, ..., 𝑝𝑛 are SDDs that respect the left subtrees of
𝑣, 𝑠1, ..., 𝑠𝑛 are SDDs that respect the right subtrees
of 𝑣, and ⟨𝑝1⟩, ..., ⟨𝑝𝑛⟩ is a partition.

An SDD that consists of a constant or a literal is called
terminal. Otherwise, it is called decomposition. SDDs
are canonical, which means that for a given vtree, every
Boolean function has a unique representation of an SDD
[6]. SDDs are a strict superset over BDDs. The variable
ordering of a BDD will then correspond to the total order
of the vtree, which is defined as a sequence of variables
obtained from the left-right traversal of the vtree [6].
BDD-trees are twofold exponential in treewidth,

whereas SDDs are just exponential. The SDDs are also as
tractable as BDDs, but are more succinct both in theory
and in practice [7]. There exist some Boolean functions
that can be represented with at least exponential BDD
size and only polynomial SDD size [7].

3. Related Work
This section provides some insights into existing re-
searches of BDDs and SDDs.

3.1. Product Configuration Using BDDs
The work of Hadzic et al. [8] presents BDDs as an effi-
cient solution to the configuration problem. The authors
also describe how they applied this method practically
in the commercial software product Configit. They high-
light that BDDs can be efficiently applied in industry
use cases, since they have several advantages over com-
monly used search-based configurators, including faster
response times, better scalability, and improved rule qual-
ity [8]. However, the research just mentions variable or-
dering methods to optimize BDDs, but does not provide
any examples of efficient heuristics.

3.2. Static Variable Ordering
Static variable ordering techniques attempt to determine
a near-optimal variable ordering before constructing the
BDD based on prior analysis of the input function [9].
Many algorithms that were proven to be efficient are

described in the work of Rice and Kulhari (2022) [9]. It in-
cludes straightforward approaches like Dependent Count,
Variable Appending, Sub-Graph Complexity etc., as well
as different metric optimization heuristic techniques.

One example of static variable ordering techniques is
the MINCE (Min Cut Etc.) heuristic proposed by Aloul et
al. (2004) [10]. Its main idea is to partition the variables
into groups with minimal functional correlation between
variables in separate groups by translating it into bal-
anced min-cut hypergraph partitioning problem.[9].
The authors of the MINCE heuristic conjecture that

their heuristic captures structural properties of Boolean
functions arising from real-world applications [10].

110

3.3. Dynamic Variable Ordering
In contrast to static variable ordering techniques, the dy-
namic ordering techniques attempt to adjust the ordering
online during the construction of the decision diagram
[9]. The idea was presented by Rudell (1993) [11] based
on the observation that swapping two adjacent variables
of a BDD can be implemented without major changes to
the Boolean function library API [3]. One of such tech-
niques is sifting. Variables are moved up and down in the
ordering, until the algorithm finds a location that leads to
an acceptable number of total vertices. Evaluation results
show that sifting improves the memory performance, but
it is also a time-consuming process [3].

3.4. Top-Down SDD Compiler
Most SDD constructing algorithms work analog to the
BDD construction that we presented earlier in this chap-
ter: create a decision diagram from smaller decision dia-
grams. This process is usually referred to as bottom-up
compilation.

The work of Oztok and Darwiche (2015) [12] describes
a top-down compiler constructing SDDs from CNF formu-
las. The top-down compiler produces a subset of SDDs
called Decision-SDDs. The compiler utilizes techniques
from SAT solvers and model counting algorithms to de-
compose a formula. Results presented in [12] show that
the top-down compiler is consistently more performant
than the bottom-up compiler.
The miniC2D software package created by the Uni-

versity of California includes code for SDD compilation
based on the idea of a top-down compiler from [12]. The
program doesn’t produce the SDDs itself, but its output
can be transformed to the SDD in linear time.

3.5. Multivalued Decision Diagram
Multivalued Decision Diagram (MDD) is another struc-
ture that is also proved to be efficient in product config-
uration area. MDDs can be seen as a generalization of
BDDs, where a function can work with more than binary
(true/false) values. Research by Andersen et al. [13] pro-
vides an analysis of MDD usage in an interactive cost
calculation task. The research also highlights the impor-
tance of variable ordering for both MDDs and BDDs. The
evaluations even show that MDDs can perform better
than BDDs for presented tasks. Nevertheless, most vari-
able ordering heuristics are generally considered to be
appliable to both BDDs and MDDs [9], so we could also
apply the heuristics that we overview in our research to
MDDs.

4. Analysis and Approach
This chapter describes different methods of ruleset pre-
processing, variable ordering and BDD construction
strategies. We will discuss the usage of existing state-of-
the-art methods like FORCE as well as suggest some new
algorithms.

4.1. Variable Reordering
This section explores various variable reordering heuris-
tics and their algorithms aimed at improving BDD con-
struction speed. The algorithms prioritize low ordering
time, manageable implementation complexity, and effec-
tive variable ordering specifically for RCNF formulas.
We implemented and experimented with the follow-

ing two different variable ordering heuristics: Variable
Frequency (VF) and FORCE (F).

4.1.1. Variable Frequency

We propose the variable frequency (VF) as an easy to
implement and efficient heuristic that produces reason-
able orderings. The VF heuristic evaluates the variable’s
influence on the function output using the frequency
metric. This metric counts either overall appearances of
each variable or the number of constraints containing
this variable. Subsequently, the algorithm sorts the list
of variables using these values in descending order. The
heuristic can be seen as a modification of the Depen-
dent Count heuristic described in [9], but used mainly
for a more general type of decision diagram called Multi-
Valued Decision Diagrams (MDDs).

The intuition behind this heuristic is that more con-
strained variables are placed on a level closer to the root
of the tree, which allows them to shorten the paths to
the terminal nodes. However, the frequency metric does
not consider the semantics of the formula and can lead
to a false conclusion about variable influence.

The frequency counting takes linear time in the num-
ber of constraints in a formula Θ(|𝐶|), considering that
we have information about each constraint’s contained
variables. Sorting takes Θ(|𝑉 |𝑙𝑜𝑔|𝑉 |). Overall, the algo-
rithm takes loglinear time in the number of variables
Θ(|𝑉 |𝑙𝑜𝑔|𝑉 |)

4.1.2. FORCE Heuristic

The FORCE heuristic which is described in the paper by
Aloul et al. (2003) [14]. FORCE is introduced as an alter-
native to MINCE, as described in Section 3.2, and comes
with a simpler implementation and orders-of-magnitude
increased speed, while providing competitive results with
MINCE.
The algorithm is based on the same observation as

the MINCE heuristic: Related variables in satisfiability

111

typically participate in the same CNF clauses [14], so the
heuristic reorders Boolean variables to place ”connected”
variables close to each other. FORCE transforms the vari-
able ordering problem into the linear placement problem.
The vertices of a hypergraph correspond to variables and
edges correspond to clauses. Since in our case, the RCNF
is used, the clauses are replaced with constraints for all
the definitions.
The FORCE algorithm uses the force-directed place-

ment instead of a min-cut placement. The idea behind it
is that interconnected objects (vertices of a hypergraph or
variables in our case) experience forces analog to springs
according to the Hooke’s law. The algorithm computes
these forces and displaces the vertices in the direction of
the forces iteratively.

After an initial ordering is given, the center of gravity
of each hyperedge 𝑒 is defined the following way:

𝐶𝑂𝐺(𝑒) = (∑
𝑣∈𝑒

𝑙𝑣) /|𝑒| (2)

with 𝑙𝑣 denoting the index of a vertex 𝑣 in a current
placement.

The new position 𝑙′𝑣 is calculated with the following for-
mula in which 𝐸𝑣 is the set of all hyper-edges connected
to the vertex 𝑣.

𝑙𝑣 = (∑
𝑒∈𝐸𝑣

𝐶𝑂𝐺(𝑒)) /|𝐸𝑣| (3)

Thereafter, the vertices are sorted according to the
newly calculated positions. These iterations continue
until a given metric of ordering stops improving. As
proposed in the paper, the total variable span metric
is used and the iterations stop after the metric doesn’t
decrease after given number 𝑛 of iterations. Additionally,
the iterations number is bounded by 𝑐 ⋅ 𝑙𝑜𝑔|𝑉 |, where 𝑐 is
a constant.
The worst-case time of the algorithm is 𝑂((|𝐶| +

|𝑉 |𝑙𝑜𝑔|𝑉 |) ⋅ 𝑙𝑜𝑔|𝑉 |) [14], where C is the set of constraints,
andwe assume that the average degree of hyperedges and
the average degree of vertices are limited by a constant.

4.2. Constraint Reordering
Another approach to reduce BDD construction time is
by manipulating the ordering of constraints in an RCNF
formula. By strategically grouping certain constraints
together, the time required for combining smaller BDDs
during construction can be decreased. This not only
results in a smaller BDD but also reduces the time for
subsequent operations. Constraint reordering, particu-
larly when combined with dynamic reordering, can be
highly efficient as it minimizes the number of nodes in
intermediate results, thereby accelerating the sifting op-
eration.

We implemented the following two different constraint
ordering heuristics: Variable Frequency (VF-C) and Mod-
ified FORCE (M-FORCE).

4.2.1. Variable Frequency

We propose a concept of variable frequency ordering for
constraints. The idea is to sort constraints according to
the variables that they contain (similar to the VF ordering
for variables). Specifically, it evaluates which variables
are most influential in the ruleset and places the con-
straints that contain such variables at the beginning of a
ruleset. Analog to the variable ordering with the same
name, it evaluates the influence of the variables using
frequency metric.

The proposed algorithm works the following way: we
use the results of variable frequency ordering (Section
4.1.1). Then we analyze which variable in each constraint
is the most frequent in the whole formula. If there are sev-
eral variables with the same frequency, the one with the
lowest index is taken. The constraint is then associated
with this variable, and we sort the constraints according
to the frequency of their associated variables.
It should be noted that the method induces a parti-

tion over the set of constraints based on the associated
variables. The partition is specified in Equation 4. Let 𝐶
be the set of all constraints, and 𝑀𝐹𝑉 (𝑐) the associated
variable of constraint 𝑐, i.e., the most frequent one.

𝑃 = { [𝑐] ⊆ 𝐶 | 𝑐′ ∈ [𝑐] ⟺ 𝑀𝐹𝑉 (𝑐) = 𝑀𝐹𝑉 (𝑐′) } (4)

So, in addition to the most frequent variables being
added to the overall BDD in the first iterations, this ap-
proach also groups the constraints with the same vari-
ables.

4.2.2. Modified FORCE

We present the heuristic that utilizes the idea of the
FORCE variable ordering heuristic by applying it to the
constraint ordering. It uses the concept of interconnected
objects and placement by measuring their forces, but uses
constraints as objects and redefines the interconnected
objects as constraints having the same variables.

Basically, the algorithm is a modification of the FORCE
variable ordering, the difference is in the types of objects
that it takes as input. We build the hypergraph by using
constraints as nodes and edges as sets of constraints that
obtain the same variable. For a set of variables |𝑉 |, a set
of constraints 𝐶 and hypergraph edges 𝐸 definition looks
like this:

𝐸 = { 𝑒𝑣 ⊆ 𝐶 | 𝑣 ∈ 𝑉 , ∀𝑐 ∈ 𝑒𝑣 ∶ 𝑣 ∈ 𝑐} (5)

We then use Formulas 2 and 3 and run the same al-
gorithm to find a constraint placement that minimizes

112

the total span of the hypergraph (𝐶, 𝐸). The number of
iterations is bounded by 𝑐 ⋅ log |𝐶|
As we can assume that every variable is used at least

once, it applies |𝐸| = |𝑉 |. So, the worst-case time of
each iteration is |𝑉 | + |𝐶| (analog to FORCE, we assume
that average degrees of vertices and hyperedges are
bound by a constant). The sorting takes Θ(|𝐶|𝑙𝑜𝑔|𝐶|), so
the worst-case performance of the algorithm is 𝑂((|𝑉 | +
|𝐶|𝑙𝑜𝑔|𝐶|)𝑙𝑜𝑔|𝐶|).

The hypergraph construction is not as trivial as in the
case of the origial FORCE heuristic. With the usage of
mapping from variables to their parent constraints and a
mapping of constraints to the edges attached to them, the
overall time complexity of the hypergraph construction
is 𝑂(|𝐶| + |𝑉 |), assuming that the number of variables in
a constraint and the number of constraints containing a
certain variable are bound by a constant.
The algorithm can be modified by assigning different

weights to each constraint based on their influence on the
output. These weights can be used in equations, such as
the center of gravity and position formulas, to prioritize
the faster movement of more influential constraints.

4.3. Diagram Construction
Given a constraint ordering, there can be several con-
struction strategies on how to use that ordering to con-
struct a BDD. The Apply algorithm is used to recursively
create BDD from smaller BDDs starting with just vari-
ables. The order in which the algorithm is applied affects
the construction time of a BDD and can be changed ei-
ther by constraint reordering, which we discussed in the
previous section, or by construction strategies.

In this section, we will present two construction strate-
gies for RCNF formulas. We mention the commonly used
Depth-First strategy and present the Merge Strategy.

4.3.1. Depth-First Strategy

A common straightforward approach: we append a
smaller BDD to the overall diagram as soon as it gets
constructed. For a RCNF formula, the strategy creates a
constraint, appends it to the overall BDD tree and moves
on with construction of the next constraint.
Constraint construction time stays bound by con-

straint size, whereby the overall tree increases its size
with each iteration, which slows down the appending of
the next BDDs.

4.3.2. Merge Strategy

We present the Merge Strategy as an alternative to the
Depth-First. This strategy tries to solve the problem by
dividing this problem into smaller ones.
First, we merge the first two constraints of them to-

gether, then we merge the resulting BDD with another

BDD of two constraints. We subsequently continue merg-
ing the BDDs containing the same amounts of constraints,
until the overall BDD is built. The construction order
can be represented as a binary tree (Figure 1).

Figure 1: Merge construction tree

Example 4.1. Construction tree for a formula (𝑥1 ∨
𝑥2)(𝑥3 ∨ 𝑥4)(𝑥5 ∨ 𝑥6)(𝑥7 ∨ 𝑥8).

This way, constraint BDDs do not get appended in the
exact order provided by this ordering, but global ordering
is not influenced toomuch. For example, if we swap every
two constraints (for instance, swap A and B, C and D in
the example 4.1) the construction of their resulting tree
will stay the same.

4.4. AMO Constraint Construction
An AMO constraint is not a binary operation, and its
construction is not directly possible using frameworks
like CUDD or libsdd that we will discuss later. Therefore,
we have evaluated two ways on how to transform it into
a form that uses Boolean operators.
The first way is to create a DNF representation of

the AMO constraint, which is shown by Equation 6 and
Equation 7 shows the whole formula 𝑓.

𝑐𝑖 = (
𝑖−1
⋀
𝑗=1

¬𝑙𝑗) ∧ 𝑙𝑖 ∧ (
𝑛
⋀
𝑗=𝑖+1

¬𝑙𝑗), 𝑖 ∈ {1, ..., 𝑛} (6)

𝑓 = (
𝑛
⋁
𝑖=1

𝑐𝑖) ∨ (
𝑛
⋀
𝑗=1

¬𝑙𝑖) (7)

In this case, the number of operations needed to build
a BDD grows quadratically in the number of literals in
the AMO formula.

Another way of presenting the AMO constraints is to
use the XOR operation, which is also supported by the
Apply algorithm. The formula constructed with XOR is
shown by Equation 8:

𝑓 = (𝑙1 ⊕ 𝑙2 ⊕ ... ⊕ 𝑙𝑛 ∧ 𝑐𝑜𝑛𝑒) ∨ 𝑐𝑧𝑒𝑟𝑜

𝑐𝑜𝑛𝑒 =
𝑛
⋁
𝑖=0

¬𝑙𝑖, 𝑐𝑧𝑒𝑟𝑜 =
𝑛
⋀
𝑖=0

¬𝑙𝑖
(8)

113

The number of operations grows linear in the number
of literals, which is makes it a more efficient method of
building decision diagrams for AMO constraints.

4.4.1. SDD Vtrees and Variable Orders

As we discussed earlier, the SDDs variable ordering is
more complex and is defined by vtrees instead of total
variable ordering that is used in OBDDs.

Darwiche and Choi presented the following definition
in [15]:

Definition 4.1. A vtree dissects a total variable order 𝜋
if a left-right traversal of the vtree visits leaves (variables)
in the same order as 𝜋.

In order to evaluate performance of the previously
described BDD heuristics in the context of SDDs, we
propose generating a total variable ordering, and then
creating a vtree that dissects that ordering.
For one total variable ordering, there are many trees

that can dissect it. Right-linear trees were discussed
preciously in section 2. SDDs that respect right-linear
vtrees correspond precisely to the OBDDs, and therefore
they cannot lead to any enhanced performance. Another
choice are left-linear trees and balanced trees. The bal-
anced trees were used for evaluation in [15] and are also
supported by the framework presented in this paper.

5. Implementation
In this chapter, we describe the frameworks that allow
constructing BDDs and SDDs using methods described
in Chapters 2 and 4.

5.1. CUDD
CUDD1 (Colorado University Decision Diagram) is an
open-source state-of-the-art package for BDD manipu-
lation written in C [16]. Practically, the package allows
presents an implementation of the Apply algorithm and
all needed data structures like unique table and cache.
The package also contains implementations of dy-

namic ordering algorithms. Available algorithms include
sifting, window permutations, group sifting and others.
The chosen algorithmwill be used every time the number
of nodes has increased up to a given threshold, which is
set automatically after each reordering.

5.2. libsdd
libsdd is an open-source library for SDD construction and
performing queries on them [17]. The interface and func-
tionality of this package are very similar to the CUDD,
but with respect to the SDD specifics.
1https://davidkebo.com/cudd

We can create a vtree with a given total order and pass
a parameter that specifies the type of the tree (right-linear,
left-linear, balanced, vertical or random) that dissects a
given total variable ordering. The library also allows
automatic SDD minimization, which is similar to BDD
dynamic ordering.

6. Evaluation
This chapter focuses on the evaluation of the algorithms
described in the previous sections. We will take a look
at the evaluated benchmarks and compare the results of
different program configurations on these benchmarks.
For the evaluation, we use a GPU computer with

64GB RAM, Intel Core i9-9900K 3.60Ghz CPU and Nvidia
GeForce RTX 2080 Ti GPU.

We used CUDD framework to implement the BDD con-
struction and ordering and libsdd for SDD construction
and ordering.

6.1. Benchmarks
One of the CAS Software applications is the Merlin CPQ
configuration tool. It allows creating configuration rules
using different complex relations between products and
product parts. Fundamentally, the program has to solve
the SAT problem for product configurations.

The evaluated benchmarks consist of real product con-
figuration rules of different companies that use Merlin
CPQ. Each benchmark corresponds to a company and
contains rulesets that describe company products. Their
rules were converted from the Merlin CPQ format into
boolean formulas. Each ruleset is an independent RCNF
formula saved as a DIMACS file. Table 1 shows the bench-
marks and the number of variables and constraints in
each of them.

6.2. Evaluation Goals
We evaluate the construction times as well as diagram
sizes for the baseline approaches and different configura-
tions of our approach. This includes several combinations
of variants of variable ordering, constraint ordering, con-
struction strategies, and an optional prior conversion of
RCNF to CNF. We compare these configurations to the
total construction time of SDDs using vtrees generated
by the miniC2D top-down SDD compiler.

Configurations in the experiments are named using ab-
breviations. The construction strategy is specified only if
it differs from the default depth-first strategy. All config-
urations utilize sifting dynamic ordering and XOR opera-
tions for AMO constraints, as shown in the Section 4.4.

114

Benchmark # Sum #vars Median #vars Sum #constraints Median #constraints
vms 31 35258 (37985) 977 (1019) 15301 (27692) 295 (489)
campers 4 9713 (14543) 2430 (3546) 25592 (44386) 4754 (9121)
heating 9 24331 (42320) 2730 (4637) 73564 (237325) 7488 (26245)
forklifts 36 483226 (682785) 13637 (19166) 735319 (1972435) 19315 (53567)
printers 263 346017 (414854) 1309 (1459) 640915 (1488435) 1473 (2364)
boards 41 25600 (35857) 471 (630) 26596 (69165) 520 (1071)
trucks 50 1378761 (2466468) 27601 (46294) 6026775 (39474710) 118075 (736760)
plants 10 30638 (36922) 3589 (4398) 31119 (57871) 2592 (5266)
circuits 8 4486 (5194) 614 (694) 6349 (9869) 688 (1193)
Total 452 2338030 (3736928) - 7581530 (43381888) -

Table 1
Benchmark sizes. Numbers in brackets refer to the values of benchmarks converted to CNF

Abbreviations Description
VF Variable Frequency (variable ordering)
VF-C Variable Frequency (constraint ordering)
FORCE (F) FORCE (variable ordering)
M-FORCE (MF) Modified-FORCE (constr. ordering)
MERGE (M) ”Merge” Construction Strategy
mC2D miniC2D vtree Ordering
cnf Input rulesets converted to CNF

Table 2
Abbreviations used for heuristics

6.3. Evaluation Methods
When constructing a decision diagram, choosing a subop-
timal ordering and dealing with numerous constraints in
a ruleset can result in construction times lasting several
days. To manage this, we impose a time limit during
the construction process and evaluate the algorithm’s
coverage. If the total construction time exceeds the limit,
the process is stopped, and the ruleset is considered un-
constructed. We assess the algorithms by comparing the
number of constructed rulesets and analyzing various
statistics for each algorithm. For example, we compare
the ordering time for cases where ordering was com-
pleted within the time limit.
First, we evaluate different configurations with a 5-

minute limit and then use the most performant ones for
construction with a 1-hour limit.

6.4. Ordering Time
Figure 2 shows how many instances of the whole set of
ruleset can be ordered in a time given by the y-axis. Here,
we evaluate only individual heuristics (with an excep-
tion to M-FORCE/FORCE/MERGE/cnf), since the present
variable and constraint ordering heuristics are indepen-
dent, and configurations with both methods being used
will just have an ordering time that equals the sum of
variable and constraint orderings. In contrast, the CNF
benchmark changes the ordering time, since the number
of variables and clauses is higher (as can be seen from
Table 1).

Figure 2: Time needed to find ordering using different con-
figurations in 5 min limit

We can observe that the only configurations managing
to order all instances under the limit are either VF or VF-
C heuristics. The FORCE variable heuristic comes close
to ordering all instances. M-FORCE constraint heuristic
is even less performant, which can be explained with
the fact that the number of constraints has more influ-
ence here and this number is bigger than the number of
variables in the given benchmarks. The combination of
M-FORCE and FORCE heuristics applied to the rulesets
converted to CNF is the least performant of all, since
the number of clauses in CNF rulesets is normally bigger
than the number of constraints in original RCNF rulesets.

6.5. Coverage Statistics
In this section, we will evaluate the decision diagram
construction with a time limit.

6.5.1. 5-Minute Limit

In Table 3 we can see the results for BDD construc-
tion with variable ordering, constraint ordering, and
different construction strategies. trucks , heating and
forklifts benchmarks did not result in successfully con-
structed rulesets and are therefore not present. Merge

115

Bench

R ∅ VF-C MF VF-C MF MF
R ∅ VF F VF F F

M M M
cnf

vms 22 24 24 26 24 24 27
campers 2 2 2 2 2 2 2
printers 82 85 99 119 125 144 162
boards 15 34 25 32 34 33 36
plants 0 0 1 1 3 0 3
circuits 4 7 7 8 7 8 8
Total 125 152 158 188 195 211 238

Table 3
5-minute coverage results with different constraint orderings
(R, ∅, VF-C, and MF), variable orderings (R, ∅, VF, and F),
construction strategies (M), and optional conversion to cnf

strategy consistently outperforms depth-first in every
configuration. The best performance was achieved by
the M-FORCE/FORCE/MERGE configuration, which also
showed better results when the formula was given in
RCNF rather than CNF.

Bench

∅ MF MF ∅ mC2D
∅ F F ∅ cnf
cnf M

vms 11 23 22 22 27
campers 2 2 2 2 2
printers 72 72 96 113 168
boards 17 21 25 27 33
plants 0 1 3 0 7
circuits 3 7 8 6 7
Total 105 126 156 170 244

Table 4
5-minute coverage results for SDDs with different constraint
orderings (∅, and MF), variable orderings (∅, and F), construc-
tion strategies (M), and optional conversion to cnf, including
the baseline mC2D

In Table 4 we can see that the heuristics do not work
as well for SDDs as for BDDs. Configurations using vari-
able and constraint heuristics do not improve coverage,
suggesting unsuitability for constructing efficient vtrees
for SDDs. The best result is shown by the construction
using vtrees created by miniC2D tool. We can see that
M-FORCE/FORCE/MERGE BDD construction (Table 3)
almost reaches the performance of best SDD configura-
tion. trucks , heating and forklifts benchmarks again
did not yield constructed rulesets.

6.5.2. 1-Hour Limit

In Table 5 we can see coverage results for the 1-hour limit.
The table contains both results for SDDs and BDDs

The M-FORCE/FORCE/MERGE configuration man-
ages to outperform SDDs constructed with vtrees from
miniC2d. M-FORCE/FORCE also shows comparable re-
sults.

Bench

SDD BDD SDD BDD BDD SDD BDD
MF VF-C MF VF-C MF mC2D MF
F VF F VF F cnf F
M M M

plants 2 2 0 3 2 8 3
heating 0 0 3 0 0 0 0
circuits 7 7 0 8 8 7 8
trucks 0 0 8 0 0 0 0
vms 24 24 24 25 29 27 29
boards 26 31 29 35 36 33 36
printers 83 122 139 145 168 170 176
campers 2 2 2 2 2 2 2
Total 144 188 205 218 245 247 254

Table 5
Decision diagrams constructed in 1-hour limit

We can see that even the best configuration shows
only 56,1% done rulesets. Forklifts did not yield any
constructed rulesets and is not present in the table and
heating and trucks yielded just a few. From Table 1 we
can see that these benchmarks are the biggest in terms of
both variable number and constraint number, which leads
to long ordering time. Still, big rulesets from heating and
trucks are only constructed by MF/F, which manages to
create the most optimal ordering.
We also evaluated the numbers of nodes for the dia-

grams constructed with the 1-hour limit. Here, we take
only the subset of rulesets that are covered by each eval-
uated configuration.

Bench

SDD BDD SDD BDD BDD SDD BDD
MF VF-C MF VF-C MF mC2D MF
F VF F VF F cnf F
M M M

plants 63464 570814 5559 78494 1112080 4745 390098
printers 2155 7573 1908 6935 4668 3238 4559
vms 3937 4759 2091 5302 3280 3050 6170
circuits 3050 8141 3130 9946 12993 4975 29231
boards 5552 11306 2879 12200 6024 4611 6599
campers 3202 15079 1899 16447 2177 2015 7472

Table 6
Median values of node counts for each configuration

In Table 6 we can see that SDD M-FORCE/FORCE
configuration has the lowest median node count on 4
benchmarks out of 6. SDD configurations generally have
better scores than BDD. The best performance BDD con-
figuration is M-FORCE/FORCE.

6.6. Evaluation Summary
M-FORCE/FORCE/MERGE configuration delivers the
best results for overall BDD construction time and outper-
forms all SDD configurations in 1-hour limit. However, it
provides results that have one of the highest nodes counts.
The presented configurations also improve construction
time for SDDs in 1 hour limit, but still are inferior to

116

some BDD configurations. In opposition to BDD, M-
FORCE/FORCE results in the smallest number of nodes
for SDD.
Some benchmarks (trucks , heating , forklifts) could

not be constructed within the limit due to complexity that
can be observed fromnumber of variables and constraints.
Such big instances needmore time to be compiled ormore
complex ordering heuristics to be applied.

Overall, with presented ordering heuristics, BDDs are
much more efficient in modelling the rulesets and show
promising results for use cases of knowledge compila-
tion.

7. Conclusion
In this paper, we examined methods to enhance the
construction time and size of BDDs for RCNF formulas.
We presented variable ordering and constraint ordering
methods that utilize the ideas of commonly used variable
ordering methods. Furthermore, we considered different
tree construction strategies. Additionally, we discussed
the application of all described methods for SDD con-
struction using vtrees.

We evaluated heuristics on RCNF benchmarks, assess-
ing coverage in different time limits and determining
the best results for each configuration, and found that
Modified-FORCE and FORCE can greatly improve the
BDD construction time. Furthermore, we applied the
variable ordering heuristics to construct balanced vtrees
for SDD construction, and results showed that FORCE
and Modified-FORCE result in the best decision diagram
size among all configurations.

References
[1] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,

L.-J. Hwang, Symbolic model checking: 1020 states
and beyond, Information and computation 98 (1992)
142–170.

[2] D. E. Knuth, The Art of Computer Programming,
Volume 4, Fascicle 1B: Binary Decision Diagrams,
Addison-Wesley Professional, 2009.

[3] R. E. Bryant, Binary Decision Diagrams, Springer
International Publishing, Cham, 2018, pp. 191–217.
URL: https://doi.org/10.1007/978-3-319-10575-8_7.
doi:10.1007/978- 3- 319- 10575- 8_7 .

[4] D. Sieling, I. Wegener, Reduction of obdds in linear
time, Inf. Process. Lett. 48 (1993) 139–144.

[5] Bryant, Graph-based algorithms for boolean func-
tion manipulation, IEEE Transactions on Com-
puters C-35 (1986) 677–691. doi:10.1109/TC.1986.
1676819 .

[6] A. Darwiche, Sdd: A new canonical representation
of propositional knowledge bases, in: IJCAI, 2011.

[7] S. Bova, Sdds are exponentially more succinct than
obdds, CoRR abs/1601.00501 (2016). URL: http://
arxiv.org/abs/1601.00501. arXiv:1601.00501 .

[8] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. An-
dersen, J. Møller, H. Hulgaard, Fast backtrack-free
product configuration using a precompiled solution
space representation, in: Proceedings from the In-
ternational Conference on Economic, Technical and
Organisational aspects of Product Configuration
Systems, Technical University of Denmark (DTU),
2004, pp. 133–140.

[9] M. Rice, S. Kulhari, A survey of static variable or-
dering heuristics for efficient bdd/mdd construction
(2008) 13.

[10] F. Aloul, I. Markov, K. Sakallah, Mince: A static
global variable-ordering heuristic for sat search
and bdd manipulation, JOURNAL OF UNIVERSAL
COMPUTER SCIENCE 10 (2004) 1562–1596.

[11] R. L. Rudell, Dynamic variable ordering for ordered
binary decision diagrams, Proceedings of 1993 In-
ternational Conference on Computer Aided Design
(ICCAD) (1993) 42–47.

[12] U. Oztok, A. Darwiche, A top-down compiler for
sentential decision diagrams, in: Proceedings of the
24th International Conference on Artificial Intelli-
gence, IJCAI’15, AAAI Press, 2015, p. 3141–3148.

[13] H. R. Andersen, T. Hadzic, D. Pisinger, Interactive
cost configuration over decision diagrams, Journal
of Artificial Intelligence Research 37 (2010) 99–139.

[14] F. A. Aloul, I. L. Markov, K. A. Sakallah, Force:
A fast and easy-to-implement variable-ordering
heuristic, in: Proceedings of the 13th ACM Great
Lakes Symposium on VLSI, GLSVLSI ’03, Associ-
ation for Computing Machinery, New York, NY,
USA, 2003, p. 116–119. URL: https://doi.org/10.1145/
764808.764839. doi:10.1145/764808.764839 .

[15] A. Choi, A. Darwiche, Dynamic minimization of
sentential decision diagrams, Proceedings of the
AAAI Conference onArtificial Intelligence 27 (2013)
187–194. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/8690. doi:10.1609/aaai.v27i1.8690 .

[16] F. Somenzi, CUDD User’s Manual, 2005. URL:
http://web.mit.edu/sage/export/tmp/y/usr/share/
doc/polybori/cudd/node3.html.

[17] A. Choi, A. Darwiche, SDD Advanced-User Man-
ual Version 2.0, Automated Reasoning Group Com-
puter Science Department University of Califor-
nia, 2018. URL: http://reasoning.cs.ucla.edu/sdd/
doc/sdd-advanced-manual.pdf.

117

Product Variant Master in the Construction Industry
Irene Campo-Gay1,*, Lars Hvam1

1Technical University of Denmark, Koppels Allé 404, 2800 Kgs. Lyngby, Denmark

Abstract
The architecture, engineering, and construction (AEC) industry is increasingly exploring the potential of mass customization
and its impact on digitalization. However, developing digital tools can be challenging in terms of defining, delimiting,
and structuring a construction product platform. To address this, a suitable information model is crucial to translate the
information from the real world into a subset of data that a configurator can handle. This research aims to identify the
common characteristics of construction product platforms to enhance their deployment into an information model, the so
called product variant master (PVM) model. The study adopts a case methodology approach, typifying product platforms in
three construction companies, and evaluates the applicability of the PVM model. Based on the findings, a systemic framework
is proposed for depicting construction product platforms within the PVM model. he research concludes that by adopting
this framework, the industry can streamline the modeling process, facilitate collaboration, and pave the way for effective
digitalization in the AEC sector.

Keywords
AEC Industry, Configurator, Product Platform, Product Variant Master

1. Introduction
During the last decades, the architectural, engineering,
and construction (AEC) industry has followed two main
trends. In the 1950s and 1960s, it followed a mass produc-
tion development, and later, in the early 1980s, it switched
to an individual customization approach. Currently, the
industry is embarking on a new strategy to exploit the
best of both paradigms, uniqueness, and commonality in
construction. However, there is still seldom research that
can support the AEC industry in this new journey [1].

Adopting a mass customization strategy implies a ma-
jor audition of a company’s business model, and the criti-
cal activity revolves around a proper definition of a mod-
ularized product range [2]. An established tool in the
manufacturing industry to describe a company’s product
range is the product variant master (PVM) model. The
PVM model provides a rational and overall view of the
product range’s structure, including the product families
and their variants [3].

Hence, adopting a mass customization approach could
boost digitalization in the AEC sector, and the first step
entails defining the product platform.

The topic of utilizing configurator methods in the
AEC industry is not a novel concept. In fact, knowl-
edge experts have employed the PVM model in limited
construction projects and its application has also been
documented [4, 5].

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
*Corresponding author.
$ ircag@dtu.dk (I. Campo-Gay); lahv@dtu.dk (L. Hvam)
� 0000-0002-8962-5386 (I. Campo-Gay); 0000-0002-7617-2971
(L. Hvam)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

However, the validity and suitability of the PVM model,
originally designed for manufacturing products, in rep-
resenting product platforms within the construction in-
dustry, have not been thoroughly examined. Therefore,
our objective is to identify the shared characteristics spe-
cific to construction product platforms and establish a
systematic framework for their representation using the
PVM model. The adoption of this framework will facil-
itate collaboration between knowledge representation
experts and domain experts in the construction indus-
try, facilitating a deeper understanding of the rationale
behind construction product platforms. Consequently,
more robust, logical, and comprehensive representations
of the models can be achieved, streamlining the modeling
processes and enhancing insights into the product itself.
This, in turn, enables the development of IT tools that
were previously hindered by the challenge of represent-
ing the complex structures inherent in AEC products.

Based on this premise, we have formulated the follow-
ing research questions:

RQ1- How can product platforms be generically por-
trayed in the AEC industry?

RQ2- How can the PVM model be used for systematic
representation of AEC information?

RQ3- What are the key differences in the application of
the PVM model between the construction industry and the
manufacturing industry?

The remaining paper is structured as follows. Section
2 provides a comprehensive theoretical background on
product platform development within IT systems, prod-
uct modularity, and the product variant master model.
In Section 3, the methodology used in the research is
described. Section 4 presents the findings from the case
studies, including the development of a generic systemic
framework for construction product platforms, the ap-

118

Figure 1: Process of translating the knowledge from the real
word to an IT system. Adapted from Duffy et al. [6].

plication of the PVM model in the construction industry,
and the differences in the application of the PVM in the
construction industry compared to the manufacturing
industry. Finally, Section 5 discusses the results and con-
cludes the paper with implications for future research
and practical applications.

2. Theoretical Background

2.1. Product Platforms in IT System
Development

Defining product platforms is crucial in fostering mass
customization and digitization in the AEC industry. In
order to develop configurators that enable this level of
customization, it is necessary to transform the knowledge
of industry experts into a manageable subset of informa-
tion [6]. The first step is the construction of a descriptive
model that captures both explicit and tacit knowledge of
the product. This knowledge is often dispersed across
various departments within the organization. Such phe-
nomenon model is collaboratively built with inputs from
different domain experts and holds significant impor-
tance as it sets the foundation of the product platform ar-
chitecture since it comprehensively defines the structure,
functions, and properties of the product, encompassing
its entire lifecycle. The next step involves formalizing the
model to enable integration and modeling within an IT
tool, such as a configurator. Formalization ensures that
the knowledge represented in the phenomenon model
can be effectively utilized in the development of a com-
puter model tool. Figure 1 illustrates this process.

Figure 2: Modularity types based on [9, 10].

2.2. Product Modularity
One of the mass customization principles is modulariza-
tion, which relates to using and arranging modules in
a product architecture. There are many definitions of
modularity and modules. However, one can describe a
module as a definite object of a product with a distinct
function and a defined interface to the other modules
[2, 7]. The interface function is a crucial part of a modu-
lar product, and it should remain unchangeable as much
as possible to grant the upgrade of modules over time
[8].

The main types of modularity are depicted in Figure 2
[9, 10].

1. Component-sharing modularity entails sharing
modules across the product platform: E.g., the
same engine used in different tools.

2. Component swapping modularity implies ex-
changing parts in a product: E.g., a phone with
different case color options.

3. Cut-to-fit modularity concerns objects with para-
metric designs. E.g., a curtain cut with different
lengths.

4. Sectional modularity involves the association
without the restriction of modules: E.g., LEGO
brick games.

5. Bus modularity (platform) means having the same
interfaces for a base element. E.g., an Arduino
board is a platform for electronic components.

2.3. Product Variant Master
A well-established modeling technique for develop-
ing product platforms is the PVM model. The PVM
model provides a holistic view of a company’s product
platform.[2].

119

Figure 3: Basic notation of the PVM model.

The tool relies on three theoretical domains [3]. First,
object-oriented modeling [11] makes it suitable for fur-
ther developing digital tools. Second, the systems theory
[12] provides the structure of the PVM. Third, modeling
mechanical products [13], which is one of the reasons
for this research to investigate the validity of using the
PVM in the AEC industry.

The PVM technique, also named by some researchers
as Product Family Master Plan (PFMP) [14, 15], provides
a holistic, systemic representation of the information
from three dimensions: the customer, the engineering,
and the part view. First, the customer view reflects the
customer’s desire to buy the product. Second, the En-
gineering view contains the functions and principles to
configure a solution. Third, the part view presents all the
physical objects that can integrate the final product.

Moreover, the PVM is divided into two general sections.
On the one hand, the left side of the PVM illustrates the
generic structure or part-of structure with the different
objects organized in a hierarchical structure. On the other
hand, the right side of the PVM represents the variants
or kind of structure, which describes the alternatives of
the objects to the left.

Additionally, the generic structure is organized into
classes further described by a cardinality property and
a set of attributes and constraints. Finally, classes relate
to instance connections on the left side of the PVM to
represent when a class needs another class to fulfill its
responsibility.

The PVM model is primarily used as a data collection
method to retrieve information from the real world. Be-
sides, it has a significant role as a communication tool
to exchange and validate data with different knowledge
experts. Building the PVM consists of multiple iterations
that refine the model. Figure 3 presents the basic notation
of the PVM model.

3. Methodology
The case study methodology is a very suitable process in
an exploratory investigation where research has yet not
developed a theory. In this case, we opt for a multiple-
case study approach to augment external validity. Nev-
ertheless, we keep the number of cases to three to allow
an in-depth analysis suitable for theory-building studies.
Hence, we seek to achieve the generality of the conclu-
sions while conceiving robust knowledge for the aca-
demic world [16, 17].

We developed and analyzed three different product
platforms in three different companies. Our primary col-
lection methods were semi-structured interviews, inter-
action with the various domain experts, and observations.
On the other hand, we conducted data representation and
documentation tasks mainly employing the PVM. Finally,
we analyzed the information models under an iterative
observation process of the PVM.

3.1. Case description
Companies 1 and 3 are medium enterprises with over 350
and 450 employees, respectively, while Company 2 is a
micro-enterprise with less than five employees. All com-
panies operate in Scandinavian countries, Sweden and
Denmark, and have embedded digital tools in their rou-
tine tasks to a certain extent, but only the third company
has experience employing configurators. Moreover, each
company performs in a different stage of the construc-
tion value chain and experiences a particular obstacle
regarding a fragmented specification process. Table 1
provides an overview of the main distinctive features of
the companies.

Company 1 pursues delivering more sustainable so-
lutions to private investors to fulfill new governmental
regulations. However, no digital tools can support them
in developing environmental declarations, and they must
resort to technical consultants to generate certified envi-
ronmental declarations.

Company 2 seeks to speed the generation of quotes
and bills of material to provide a faster response to pri-
vate investors and agilely decide on the contractor by
benchmarking.

Company 3 aims to speed up the design generation
process. Even if they use digital tools to support different
tasks during the process, no one can co-generate this
design with the designers and potential customers and
additionally include environmental assessment currently
done in a separate operation.

All three companies have a shared approach when it
comes to the configurator tool, which is seen as a decision
support tool utilized by designers to adopt a proactive
approach to design rather than a reactive one. This proac-
tive approach helps prevent potentially high costs in sub-

120

Table 1
Features of the three analyzed company cases.

Features Company 1 Company 2 Company 3

Employees ∼ 350 ∼ 5 ∼ 450
Stage on
the con-
struction
value
chain

Construction
materials

Main
contractor

Construction
materials

Product Concrete
products

Single-
family
houses

Façade
Systems

Main
collabora-
tions with
other parts
of the con-
struction
value
chain

Private
investors
(institu-
tional)
Architects
Technical
consultants
on environ-
mental
declarations

Private
investors
(individual)
Architects
Technical
consultants
on energy
assessment
Technical
consultants
on
structural
assessment
Contrac-
tors

Private
investors
(institu-
tional)
Architects
Technical
consultants
on environ-
mental
assessment

Location Sweden Sweden Denmark
Configurators
experience

No No Yes

Organizational
main
problem

Boost more
sustainable
products

Reduce
proposal
lead times

Reduce
design lead
times

Main Con-
struction
Type

On-site and
prefabricated

On-site Prefabricated

sequent project phases. Additionally, in all cases, the con-
figurator is integrated without the need for connecting
external data or undergoing extensive reengineering pro-
cesses. Therefore, the configurator successfully fulfills
its primary objective of automating processes, relieving
the workload on human resources, and speeding up lead
times.

3.2. Data collection, representation, and
analysis

We developed case studies related to Companies 1 and 2
in parallel for 30 months until we produced functional
and testable configuration system prototypes. On the
other hand, we developed the case study in Company 3
separately over seven months. In all cases, we gather the
product information through modeling sessions with the

relevant domain experts in each case. The sessions were
an hour long, and we held them mostly individually.

In Company 1, we had 35 sessions with the project
leader, 24 sessions with an environmental assessor, and
three sessions with the domain expert. Additionally, we
held a testing workshop with the external project com-
mittee.

In Company 2, we held 115 sessions with the project
leader and 36 sessions with technicians. Additionally, we
evaluated the prototype with the potential users through
a testing session followed by a semi-structured interview.

In Company 3, we held 20 sessions with the project
leader and 20 sessions with the architectural firm in
charge of developing the product platform design. We
used open-ended questions to gather the data, and later,
we reflected it in an ontology model, the PVM, which at
the same time served as a communication tool with the
domain experts.

Finally, we correlated the three PVM models through
an observation analysis. Based on the discussions held
in the research group, we developed the study findings
under an iterative process to refine the results.

3.3. Research maturity
The results and findings presented in this paper are de-
rived from an advanced stage of research. Due to con-
fidentiality reasons, the specific PVM models utilized
by each company cannot be disclosed. However, the
subsequent sections describe the outcomes based on the
aforementioned research.

Currently, both Company 1 and Company 2 have suc-
cessfully adopted the PVM model, leading them to incor-
porate configuration systems into their work environ-
ments. These companies have integrated configurator
tools using standard configuration systems as supple-
mentary resources to alleviate the burden on human
resources. In Company 1, the configurator tool is un-
dergoing final validation, where engineers employ it to
make more informed design choices. Similarly, Company
2 has reached a comparable stage, where the configura-
tor replaces previously manual tasks, reducing lead time
from weeks to hours. Importantly, these configurators do
not interfere with additional software, such as CAD sys-
tems, as they are employed at different stages and outputs
of the construction value chain. Additionally, Company
3 has also achieved success in developing a configura-
tor tool, which has been operational for the past three
years. This tool serves as a decision support resource
for architects, providing assistance during early design
phases of projects. In this case, the tool enhances early
design phases of the project. It is worth highlighting that
the PVM model played a strong role, drawing attention
to various modular design components and assemblies
on the platform that required redesign to facilitate the

121

subsequent development of the configurator.

4. Findings
We propose a generic framework to be used by AEC com-
panies despite their stage in the construction value chain.
For this purpose, we analyzed three product platforms in
three companies with entirely different characteristics:
company size, construction stage, product, digitalization
aim, and on-site or prefabrication construction.

The main findings of the research are presented in
the following three subsections. First, we describe the
suggested systemic approach for developing product plat-
forms in the AEC industries. Second, we illustrate how
to use the PVM model in AEC projects to depict con-
struction information. Finally, we highlight the main
differences between the application of the PVM in the
manufacturing industry compared to the AEC industry.

4.1. Systemic framework
Based on the analysis and observation from the three
PVM models, we have identified a generic model ap-
plicable to any modular construction product platform
embracing mass customization. The systemic framework
comprises three layers: site, construction, and product.

1. This site depicts the place in which the construc-
tion is located. These can have relevance, for ex-
ample, in terms of the transportation distance of
the products from the factory to the working site,
calculating the maximum structural load in the
roof based on the average snowfall level, or know-
ing the accommodation capacity of construction
machinery such as trucks or cranes, among other
features. Moreover, the site layer can have more
than one level, for instance, in renovation projects
where both location and previous construction
need to be considered.

2. The construction represents the volumetric shell
in which the company’s products are installed.
In most cases, the construction might be broken
up into construction parts. For example, the roof
can be one of the construction parts of a building
construction.
The predominant modularity type in this level is
“cut-to-fit,” which has the property of parametriza-
tion and, hence, describes the volumetric object.

3. The products layer illustrates the actual commer-
cialized products. This layer is composed of mul-
tiple instances, and its total number depends on
the project’s complexity. There are two defined
types of products:

Figure 4: Systemic framework depicted using a UML diagram.

a) Predefined products are predominant in pre-
fabricated construction and are mainly de-
fined by “component sharing” and “com-
ponent swapping” modularity. The mod-
ule interface is significant in predefined
products and needs to be particularly well-
defined. A frequent example of prede-
fined products is windows and doors. An-
other example of a predefined product could
be a modular room in which “cut-to-fit”
modularity might also be present but in
which “component sharing” and “compo-
nent swapping” modularity have a more
significant influence.

b) Volumetric products are predominant in on-
site construction, and they are mainly de-
fined by “cut-to-fit” and “sectional” mod-
ularity. Hence, the module interface has
limited significance, and its principal char-
acteristic is its parametric design. An il-
lustrative example of a volumetric product
could be the concrete used to build a wall.

Figure 4 illustrates the generic systemic framework
using UML notation.

4.2. PVM in the construction industry
The generic systemic framework facilitates the modeling
process in the PVM model by providing a better under-
standing of the construction product platform. Layer
1, site, and layer 2, construction, are described in the
Customer View since they directly depend on customer
preferences and choices. Likewise, layer 3, products, is

122

depicted in the Part View as it represents all the physical
components of the project. The three layers are closely
related and utterly dependent on one another.

Figure 5 illustrates the applicability of the PVM infor-
mation model in the construction industry. Besides, the
generic systemic framework is reflected to envision its
use in construction product platforms.

This reinterpretation of the PVM model can assist con-
struction companies in portraying their product range,
particularly in the early design phase of the information
model. Hence, the PVM description could potentially
reduce the time and resources invested in designing and
organizing the modules and their relationship.

4.3. PVM application in industrial
manufacturing vs AEC industry

Notable distinctions between the application of the PVM
model in industrial manufacturing companies and its
application in the construction industry have become
evident. The following outlines the unique characteris-
tics and novel approaches of the PVM model specifically
tailored for the construction industry, in contrast to pre-
vious PVM applications, focused on mass-customized
products in manufacturing:

• Modularity: Modularity in AEC projects relies
heavily on design parametrization, i.e., cut-to-fit
modularity.

• Digitalization: While configurators are widely
employed by manufacturing companies to ad-
dress mass customization, they are relatively un-
familiar tools in the AEC industry. Architects pri-
marily rely on BIM (Building Information Mod-
eling) tools, which are usually based on CAD
systems lacking parametric history design capa-
bilities, a crucial aspect considering the modular
typification of construction projects.

• Product structure: The construction industry is
distinguished by its offering of unique designs
with a low degree of standardization in their build-
ing systems.

• Stakeholder dependencies: The construction value
chain operates in more isolated siloes compared
to the manufacturing industry. There are sub-
stantial interdependencies among architects, en-
gineers, and constructors, requiring extensive co-
ordination efforts.

• Production process: Manufacturing processes are
typically standardized and tightly controlled in a
manufacturing environment. In contrast, con-
struction projects predominantly involve on-
site construction, encompassing numerous dis-
ciplines, manual operations, and coordination,

Figure 5: Applicability of the PVM information model in the
AEC industry to depict construction product platforms.

which can present challenges in mapping out the
production process.

• Production variability: Construction products
exhibit higher tolerances compared to manu-
factured products, necessitating allowances and
adaptations due to site-specific conditions and
project-specific requirements.

• Production volume: Mass customized products
in manufacturing companies usually target cus-
tomization at higher volumes. Conversely, the
construction industry typically operates at lower
volumes and on a project basis.

• Product life-cycle: AEC industry products are pri-
marily designed for long lifespans, and conse-
quently, maintenance and renovation processes
have a significant influence on the overall prod-
uct.

These differences highlight the need for specialized ap-
proaches and considerations when applying the PVM
model in the construction industry, acknowledging its
unique characteristics and challenges.

5. Discussion and conclusion
In this paper, we conducted an analysis of construction
product platforms and developed a systemic framework
for their depiction using the PVM model. Although con-
figuration project development methods have been used
in the AEC industry, the suitability of the PVM model for
representing construction product platforms has not been

123

thoroughly studied. Previous literature shows limited ap-
plication of the PVM model in construction projects and,
moreover, it was originally designed for industrial me-
chanical products. Therefore, our study aims to analyze
the validity and applicability of the PVM model rather
than its feasibility for construction product platforms.

Our research has three main contributions and out-
comes:

Firstly, we developed a generic framework that pro-
vides a systematic organization of construction product
platforms into modules. This framework characterizes
the relationship and cardinality of these modules, de-
scribing them based on their modularity and interface
significance. Implementing this framework can enhance
collaboration between knowledge representation experts
and domain experts in the construction industry, leading
to a better understanding of construction product plat-
forms. Consequently, more robust, logical, and compre-
hensive models can be created, streamlining the modeling
processes and providing deeper insights into the prod-
ucts themselves. Additionally, this development of IT
tools, which was previously hindered by the challenge of
representing complex structures in AEC products, can be
considerably improved. This framework also addresses
RQ 1.

Secondly, the framework helps answer RQ 2 by demon-
strating the applicability of the PVM model in AEC cases.
Despite being initially designed for industrial manufac-
turing projects, our observations confirm its suitability in
the construction sector. Thus, we can describe the use of
the PVM model in the construction industry and validate
its applicability beyond manufacturing projects.

Thirdly, we address RQ 3 by uncovering that the ap-
plication of the PVM model in the construction indus-
try diverges from its usage in industrial manufacturing.
The construction industry has different characteristics,
including modularity, digitalization, stakeholder depen-
dencies, production processes, variability, production
volume, and product life-cycle. Consequently, applying
the PVM model in the construction industry requires
specialized approaches. It is essential to recognize these
differences to effectively use the PVM model in the con-
struction industry.

To conduct a comprehensive analysis of the research
questions, we deliberately chose a smaller sample size.
The observed variations among the three company cases
provide further evidence supporting the generalizability
of our findings. The validity of the research outcomes
is reinforced by the advanced stage of development of
the configuration tools. However, in order to strengthen
the framework even further, it would be recommended
to replicate and evaluate the proposed framework in ad-
ditional cases.

Furthermore, it is important to emphasize that
widespread use of the PVM model in the AEC indus-

try can help streamline the fragmented value chain of
construction projects, which often rely on siloed speci-
fication processes. Documenting construction product
platforms using the PVM model can bring similar bene-
fits to those achieved by manufacturing industries, such
as easier maintainability and smoother development of
the product platform. Additionally, this approach has the
potential to reduce the modeling phase of the configu-
rator. It is conceivable that other business fields beyond
manufacturing or the AEC industry could benefit from
the same rationale applied in this research. Therefore,
further studies could contribute to the theory of informa-
tion models, specifically investigating the applicability
of the PVM model in fields such as logistics, services, or
processes.

References
[1] C. L. Thuesen, J. S. Jensen, S. C. Gottlieb, Making

the long tail work: reflections on the development
of the construction industry the past 25 years, Pro-
ceedings 25th Annual Arcom Conference (2009)
1111–20.

[2] L. Hvam, N. H. Mortensen, J. Riis, Product Cus-
tomization, Springer Publishing Company, 2008.
doi:10.1007/978-3-540-71449-1.

[3] N. H. Mortensen, L. Hvam, A. Haug, Modelling
product families for product configuration systems
with product variant master, Ecai 2010 (2010).

[4] A. Kudsk, L. Hvam, C. Thuesen, M. O. Grønvold,
M. H. Olsen, Modularization in the construction
industry using a top-down approach, Open Con-
struction and Building Technology Journal 7 (2013)
88–98. doi:10.2174/1874836801307010088.

[5] A. Kudsk, M. O. Grønvold, M. H. Olsen, L. Hvam,
C. Thuesen, Stepwise modularization in the
construction industry using a bottom-up ap-
proach, Open Construction and Building Tech-
nology Journal 7 (2013) 99–107. doi:10.2174/
1874836801307010099.

[6] A. Duffy, M. Andreasen, Enhancing the evolution of
design science, in: Proceedings of ICED, volume 95,
1995, pp. 29–35.

[7] J. K. Gershenson, G. J. Prasad, Y. Zhang, Product
modularity: Definitions and benefits, Journal of En-
gineering Design 14 (2003) 295–313. doi:10.1080/
0954482031000091068.

[8] A. Ericsson, G. Erixon, Controlling design variants:
modular product platforms, Society of Manufactur-
ing Engineers, 1999.

[9] B. Pine, Mass customisation: The new frontier in
business competition, Harvard Business School
Press, Boston, MA, USA (1993).

[10] K. Ulrich, Fundamentals of product modularity,

124

Management of Design (1994) 219–231. doi:10.
1007/978-94-011-1390-8_12.

[11] S. Bennett, S. McRobb, R. Farmer, Object-oriented
systems analysis and design using UML, McGraw-
Hill, 2006.

[12] L. Skyttner, General systems theory: Origin and
hallmarks, Kybernetes 25 (1996) 16–22. doi:10.
1108/03684929610126283.

[13] V. Hubka, E. Eder, Theory of technical systems : a
total concept theory for engineering design (1988).

[14] A. Haug, Managing diagrammatic models with dif-
ferent perspectives on product information, Jour-
nal of Intelligent Manufacturing 21 (2010) 811–822.
doi:10.1007/s10845-009-0257-y.

[15] U. Harlou, T. U. of Denmark, MEK, Developing prod-
uct families based on architectures, Department of
Mechanical Engineering, Technical University of
Denmark, 2006.

[16] C. Voss, N. Tsikriktsis, M. Frohlich, Case research
in operations management, International Journal of
Operations and Production Management 22 (2002)
195–219. doi:10.1108/01443570210414329.

[17] C. Voss, M. Johnson, J. Godsell, Case research,
in: Research methods for operations management,
Routledge, 2016, pp. 181–213.

125

	Visualization in Configurators: Reflections for Future Research Enrico Sandrin, Cipriano Forza
	User Interface Expert for Configurators Enrico Sandrin, Gerhard Leitner, Cipriano Forza
	Specifying Configurable Videos with Feature Models Sebastian Lubos, Alexander Felfernig, Viet-Man Le
	Solving Constraint Satisfaction Problems with Database Queries: An Overview Alexander Felfernig, Viet-Man Le, Albert Haag, Sebastian Lubos
	Game-based Configuration Task Learning with ConGuess: An Initial Empirical Analysis Andreas Hofbauer, Alexander Felfernig
	Collaborative Recommendation of Search Heuristics For Constraint Solvers Damian Garber, Tamim Burgstaller, Alexander Felfernig, Viet-Man Le, Sebastian Lubos, Trang Tran, Seda Polat-Erdeniz
	Solving Multi-Configuration Problems: A Performance Analysis with Choco Solver Benjamin Ritz, Alexander Felfernig, Viet-Man Le, Sebastian Lubos
	Decision Heuristics in a Constraint-based Product Configurator Matthias Gorenflo, Tomáš Balyo, Markus Iser, Tobias Ostertag
	Identifying Potential Applications of Service Configuration Systems in a Logistics Company Erika Marie Strøm, Tine Meidahl Münsberg, Lars Hvam
	Multi-level configuration in smart governance systems Salvador Muñoz-Hermoso, David Benavides, Francisco Jose Dominguez Mayo
	Dynamic Aggregates in Expressive ASP Heuristics for Configuration Problems Richard Comploi-Taupe, Gerhard Friedrich, Tilman Niestroj
	Towards a formalization of configuration problems for ASP-based reasoning: Preliminary report Nicolas Rühling, Torsten Schaub, Tobias Stolzmann
	Interactive Configuration with ASP Multi-Shot Solving Richard Comploi-Taupe, Andreas Falkner, Susana Hahn, Torsten Schaub, Gottfried Schenner
	PERFECT: PErformant and Robust read-to-fly FlEet ConfiguraTion: from robot to mission plan Elise Vareilles, Stéphanie Roussel, Gauthier Picard
	Construction of Decision Diagrams for Product Configuration Maxim Popov, Tomáš Balyo, Markus Iser, Tobias Ostertag
	Product Variant Master in the Construction Industry: A Synthesis of Construction Product Platforms Irene Campo Gay, Lars Hvam

