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Preface
The 26th edition of the International Workshop on Configuration (ConfWS 2024) has
been co-located with the International Conference on Principles and Practice of Constraint
Programming (CP 2024 celebrating its 30th anniversary) hosted by the University of Girona
in Spain. ConfWS 2024 has been a vibrant hub for researchers and industry professionals
interested in configuration technology. In addition, for edition 2024, Siemens supported the
event confirming its sponsorship.

ConfWS 2024 was a two-day event where high-quality research in all configuration-related
technical areas has been presented. This edition had a special focus on Green Configuration
which is related to EU Green Deal as stated in the EU Agenda 2050 to drive the EU community
to a more sustainable future. Researchers and experts from academia and industry shared
their contributions on the potentials of configuration in achieving sustainability goals for a
more sustainable future. The program includes special sessions on green configuration and
sustainability, including topics such as sustainability and configurator applications, efficient
reasoning, configuration space learning, integration of large language models (LLMs), and
further aspects related to problem solving and optimization.

ConfWS 2024 has been visited by 24 attendants from academia and industry. There were 14
papers submitted for peer review to ConfWS 2024. 14 papers were selected for publication
in the workshop proceedings after a review by three independent reviewers per paper. In
addition, three keynote speakers were invited from three industrial partners: Patrik Östberg
and Sonja Arce (from Tacton) presented the talk “Inspiring & enabling manufacturers to
shape and build a sustainable future”; Sophie Rogenhofer (from Siemens) presented the talk
“Sustainability at Siemens - Scaling sustainability impact”; and Jean-Guillaume Fages (from
Cosling) presented the talk “Automating complex computations with Cosling Configurator”.

ConfWS 2024 introduced the role of a “Publicity and Social Media Chair” on the organization
committee, a role played by Irene Campo Gay (Technical University of Denmark), who was
in charge of promoting the workshop on social media and managing the official workshop
accounts on LinkedIn and Twitter (X). In line with previous editions, the workshop
participants selected the best paper (“Exploiting Large Language Models for the Automated
Generation of Constraint Satisfaction Problems”) and the best student paper (“Configuration
Copilot: Towards Integrating Large Language Models and Constraints”).

We want to thank the ConfWS 2024 authors for their high-quality submissions, the program
committee members for their high-quality reviews, and the University of Girona and the CP
Workshop Chair and CP Chairs for their proactive support. Further thanks goes to SIEMENS
for sponsoring ConfWS 2024, and the keynote speakers for delivering inspiring presentations.
The following projects by the Spanish Ministry of Science, Innovation and Universities
also supported the workshop: TASOVA PLUS research network (RED2022-134337-T), IRIS
(PID2021-122812OB-I00), and Data-pl (PID2022-138486OB-I00).

September 2024 Elise Vareilles, Chiara Grosso
José Miguel Horcas, Alexander Felfernig
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Configuration of Heterogeneous Agent Fleet: a Preliminary
Generic Model
Thomas Pouré1,†, Stéphanie Roussel2,†, Elise Vareilles1,3,∗,† and Gauthier Picard2,†

1ISAE SUPAERO, Université de Toulouse, 10 avenue Édouard Belin, BP 54032 - 31055 Toulouse CEDEX 4, France
2DTIS, ONERA, Université de Toulouse, 2 avenue Édouard Belin, BP 74025 - 31055 Toulouse CEDEX 4, France
3CGI / IMT Mines Albi, Université de Toulouse, allée des sciences, 81000 Albi, France

Abstract
A multitude of autonomous agents – encompassing a range of technologies, including robots and drones – represent a crucial
modern tool for the execution of a multitude of tasks, including surveillance, delivery and the saving of lives. In order to
optimally utilise these agents, it is vital to configure each agent, the composition of the entire fleet of agents and the mission
plan associated with each agent in the most effective manner possible. The following article presents a knowledge model for the
configuration of a fleet of heterogeneous agents, encompassing the three levels of configuration: agent configuration, agent fleet
configuration, and mission plan configuration. It explicitly delineates the relationships between these three configuration levels,
thereby facilitating rapid, efficient, robust, and simultaneous configuration. A toy problem illustrates our first proposals.

Keywords
Multi-level Configuration, Autonomous Agent, Knowledge Formalisation, Heterogeneous Fleet,

1. Introduction
With the increasing autonomy of drones and robots, fleets
of agents are now being used for many different types
of missions, such as exploration, rescue, disaster relief,
civil and military security. In this article, the term "agent"
is used to refer to any system that is capable of acting
autonomously in a variety of environments, including
ground, water, and air. The term encompasses a di-
verse range of platforms, including quadrupeds, bi-blades,
underwater rockets, and others. Additionally, the term
"agent" encompasses a wide range of capabilities, includ-
ing communication, rescue, and delivery. Therefore, the
term "agent" can be used to describe a diverse range of sys-
tems, from household robots to high-tech stealth military
drones. Some of these applications require heterogeneous
agent fleets, i.e. with different platforms, capabilities, mo-
bility and equipment. Such fleet of heterogeneous agents
may or may not be coordinated autonomously to carry out
the missions to which the fleet is dedicated. For exam-
ple, an exploration mission may require the collaboration
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of ground agents with at least the ability to Travel and
Communicate, and aerial agents with at least the ability to
Observe and Communicate. The success of a multi-agent
mission depends, among other things, on the configuration
of the fleet executing it [1].

This paper addresses the problem of multi-level con-
figuration of heterogeneous agent fleets, as presented in
Fig. 1. By multi-level configuration, we mean the several
interleaved problems that must be solved when setting
up a fleet to carry out a mission. The first level is the
simultaneous configuration of each agent (Agent Configu-
ration Problem, ACP). The second consists in configuring
the fleet itself (Fleet Configuration Problem, FCP), i.e.
defining precisely what the composition of the fleet is.
The final level is the fleet deployment problem in order
to carry out dedicated missions in an efficient and robust
way (Plan Configuration Problem, PCP). This multi-level
configuration problem requires an analysis of the rela-
tionships between these three configuration levels, both
upstream in fleet composition and downstream in fleet
operation.

This multi-level configuration problem raises many re-
search questions, such as:

• the representation/modeling of configuration
knowledge (compact modeling language),

• eliciting constraints (what is allowed or forbidden)
and criteria (what is preferable) that apply both to
the fleet configuration and to each robot in it, and

• the development of algorithms to generate optimal
or, at least, good-quality solutions.

This problem can be tackled in several ways. First of
all, there is the question of how to express knowledge,
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Figure 1: Multi-level configuration of an heterogeneous fleet of robots.

constraints and preferences, both from the point of view
of fleet configuration and from the point of view of per-
formance and robustness in the context of mission [2].
Approaches such as constraint programming and multi-
agent modeling [3, Chap.2 and 15] appear to be suitable
candidates.

Following several works dedicated to Search and Res-
cue applications such as [4] and [5], a mission consists
here in the execution of several tasks distributed on an
intervention zone represented by a graph. A fleet and a
plan of action are configured in order to accomplish the
mission, i.e. successfully complete all the tasks. The per-
formance of a fleet for a mission can be evaluated along
several criteria: the global time required for performing
all tasks, the fleet cost (platform, equipment), the fleet
and the plan robustness (capacity of the fleet/the plan to
support damages and complications), etc.

This article focuses on initial ideas for modeling the
knowledge of this multi-level configuration problem of
heterogeneous agents fleets. More precisely, we propose a
formal modelling of the inputs of each level configuration
problem, along with the decisions that have to be made.
The formalization of constraints associated with each level
are out of scope of this paper and are left for future work.

The paper is organized as follows. In Section 2, we
formally describe the type of mission we consider. Then,
Sections 3, 4 and 5 are respectively dedicated to the Agent
Configuration Problem or ACP, the Fleet Configuration
Problem or FCP and the Plan Configuration Problem or
PCP. In each of these sections, we formally present the
inputs of the problem, the associated decision variables

and an illustrative example. Finally, we conclude and
discuss future works in Section 6.

2. Mission
A mission allows to represent the several tasks that the
agents have to perform and the graph on which they can
move. The elements composing a mission can be repre-
sented in a UML diagram as illustrated in Fig. 2. Those
elements are first briefly described and then formalized
in a second step. In our work, we have made several
assumptions on a mission. A mission is therefore:

• deterministic: the mission is perfectly known
from the beginning and during the fleet’s interven-
tion, and agents cannot suffer from malfunctions,

• static: the mission remains static throughout the
fleet’s intervention. No edges or vertices are intro-
duced or removed during the mission.

2.1. Description
A Mission is composed of the following elements.

• The location on which the agents can evolve is rep-
resented by a connected and non-directed Graph.
Such a graph is composed of vertices (Vertex
class), representing way points or places of inter-
est in the mission context, and edges (Edge class),
representing routes for moving.
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Mission Task
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Trafficability Capability
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Figure 2: UML representation of a mission.

• One of the vertices is called the base, and is the
location at which the agents start and finish their
missions.

• The actions that the agents have to perform to
achieve the mission are called Tasks. Each task
is assigned to a single vertex, that represents the
location at which it must be executed. A capability
is associated to each task, it is the requirement to
perform a task.

For the agent to be able to move through the graph and
execute task, we define two additional classes.

• A Capability describes how an agent accom-
plishes the mission’s tasks. More precisely, each
task requires a single specific capability to be exe-
cuted. Examples of capabilities are observe, grab
material, transport a injured person, etc.

• One instance of Trafficability is associated to each
edge, representing the edge practical environment
for agent moves. Instances of Trafficability could
be Aerial, Terrestrial or more fine-grained proper-
ties such as Forest, Field, Street, etc. Note that a
trafficability could also be combinations such as
Terrestrial and Aerial.

2.2. Formalization
We propose here a mathematical formalization of the mis-
sion, that can be used as input for the multi-level configu-
ration problem.

A mission is a tuple m = (V,E,T,TV,C,CT,R,RE)
where:

• V = (1, . . . ,nV ) is the vector of vertices. We sup-
pose that vertex with number 1 is the base.

• E = (ei, j)i, j∈[1..nV ]2 is the adjacency matrix of size
n2

V that represents the connection between vertices

V . For all vertices i, j ∈ [1..nV ]
2, ei, j = 1 if there

exists an edge between vertices i and j, ei, j = 0
otherwise.

• T = (1, . . . ,nT ) is the vector of tasks that have to
be performed during the mission.

• TV = (tvi)i∈[1..nT ] is a vector of size nT such that
for all task i ∈ [1..nT ], tvi ∈ [1..nV ] is the vertex
the task i is assigned to.

• C = (1, . . . ,nC) is the vector of capability types.

• CT = (cti)i∈[1..nT ] is a vector of size nT , such that
for each task i ∈ [1..nT ] in m,cti ∈ [1..nC] repre-
sents the capability required by task i.

• R = (1, . . . ,nR) is the vector of traficabilities.

• RE = (rei, j)i, j∈[1..nV ]2 is a matrix of size n2
V , such

as for each edge (i, j) ∈ [1..nV ]
2, rei, j ∈ [1..nR] is

the trafficability of the edge ei, j in m.

We call the graph associated to a mission m the pair
(V,E). A mission m is said to be well-formed if the fol-
lowing assumptions hold:

• The graph does not contain any edge from a vertex
to itself.

∀i ∈ [1..nV ],ei,i = 0 (1)

• The graph is non-oriented and the trafficability
matrix is symmetrical.

E = ET (2)

RE = RET (3)

• The graph is connected, i.e. from any two ver-
tices i and j, there exists a path of edges con-
necting them. Formally, ∀i, j ∈ [1..nV ]

2, ∃k ∈ N∗,
∃(v1, . . . ,vk) ∈ [1..nV ]

k, such that:

v1 = i,vk = j (4)

∀r ∈ [1..k−1], evr ,vr+1 = 1 (5)

• For any vertices i, j ∈ [1..nV ]
2, ei, j = 1 means that

there is exactly one edge between vertices i and j.

In order to illustrate the notations defined previously,
we consider the following toy example.

2.3. Toy Problem Mission
We define a simple Search & Rescue mission m, illustrated
in Fig. 3, composed of the following elements.

• The vertices vector of locations is V =(︁
1 2 3

)︁
, where 1 is the "base" (c), 2 is the

"ruins" (r), and 3 is the "aid camp" (_).
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Figure 3: Illustration for Example 2.3. Three locations are
considered: a base (c), ruins (r) to explore, and an aid camp
(_) to supply. Moving from the base to the ruins requires
an aerial agent (k), while moving to the camp requires a
terrestrial agent (4).

• The edges matrix of paths is E =

⎛
⎝

0 1 1
1 0 1
1 1 0

⎞
⎠.

For instance, e1,3 = 1 holds, meaning that it is
possible to directly go from vertex 1 ("base") to
vertex 3 ("aid camp").

• The tasks vector is T =
(︁
1 2

)︁
, where 1 is "ex-

plore the ruins" (☼), and 2 is "deliver supplies"
(g).

• The assignment of tasks to the vertices is the vec-
tor TV =

(︁
2 3

)︁
, representing that task 1 ("ex-

plore the ruins") and task 2 ("deliver supplies")
must respectively be executed in vertex 2 ("ruins")
and vertex 3 ("aid camp").

• The capabilities vector is C =
(︁
1 2

)︁
, where 1 is

"carry" (~), and 2 is "observe" (4).

• The assignment of capabilities to the tasks is the
vector CT =

(︁
2 1

)︁
, meaning that capability 2

("observe") is required for task 1 ("explore the
ruins") and capability 1 ("carry") is required for
task 2 ("deliver supplies").

• The traficabilities are R =
(︁
1 2

)︁
, where 1 is "ter-

restrial" (4), and 2 is "aerial" (k).

• The assignment of traficabilities to the edges is the

matrix RE =

⎛
⎝

0 2 1
2 0 1
1 1 0

⎞
⎠. For instance the path

(1,2) has the trafficability 2 ("aerial"), whereas the
path (2,3) has the trafficability 1 ("terrestrial").

3. Agent Configuration Problem
In this section, we present the model associated with the
Agent Configuration Problem (ACP), which consists in
deciding agents’ composition wrt. a catalog of platform

types and equipment types, by using the notion of agent
pattern.

3.1. Description
As illustrated in Fig. 4, an AgentPattern represents a
type of robot or a type of drone that can act somewhat
autonomously. Elements composing an agent pattern are
divided as follows:

• Platform represents the skeleton of an agent pat-
tern. Each agent pattern has a single platform.

• Each Platform is associated to a unique Platform-
Type representing the agent pattern skeleton type.
Examples of such platform types could be aerial,
terrestrial, marine. It would also be possible to
consider more fine-grained platform types, such
as quadcopter or submarine. The platform type
limits and defines most of the agent pattern char-
acteristics.

• Equipment represents the payload that can equip
an agent pattern. An agent pattern can be equipped
with several equipments.

• Each Equipment is associated to a unique Equip-
mentType, which represents the type of the equip-
ment (e.g. camera, sensor, motor).

• Available PlatformTypes and EquipmentTypes
are grouped in a Catalog.

An agent is able to interact with the mission throughout
two connections to the mission description:

• Each Equipment instance has a set of Capability
instances, allowing agents to execute tasks. If an
agent pattern is equipped with an equipment that
provides the capability associated to a task, then
any agent following that pattern will be able to
perform the task.

• Each PlatformType instance is associated with
a set of Trafficability instances representing the
types of environments it is compatible with. Con-
sequently, an agent pattern is compatible with an
edge if and only if the edge trafficability belongs to
the agent pattern platform type set of compatible
traficabilities.

3.2. Formalization
We first formalize the inputs of the agent configuration
problem and then define the decision variables. We next
present some assumptions on the problems we consider
and finally illustrate the concepts on the toy example.
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Figure 4: UML representation the ACP.

3.2.1. Inputs

Let m be a mission. A catalog on m is a tuple catm =
(P,Q,maxQ,RP,CQ) where:

• P = (1, . . . ,nP) is the platform types vector,

• Q = (1, . . . ,nQ) is the equipment types vector,

• maxQ ∈ N∗ is an upper bound on the number of in-
stances of each equipment type that can be carried
by an agent pattern,

• RP = (rpi, j)i, j∈[1..nP]×[1..nR] is the plat-
form/traficability compatibility matrix of
size nQ.nR. For each platform type i ∈ [1..nP]
and each trafficability j ∈ [1..nR], rpi, j = 1 if the
platform type i is compatible with trafficability j.
Otherwise, rpi, j = 0.

• CQ = (cqi, j)i, j∈[1..nQ]×[1..nC ] is the equip-
ment/capability relation matrix of size nQ.nC.
For each equipment type i ∈ [1..nQ] and each
capability j ∈ [1..nC], cqi, j = 1 if the equipment
type i provides the capability j. It equals 0
otherwise.

The catalog is the only input of the ACP.

3.2.2. Assumptions

A catalog cat should satisfy the following assumptions.

• Task Feasibility. For each task, there is at least
one equipment type in the catalog that provides its
capability, which translates into:

∀ j ∈ [1..nT ],
nQ

∑
i=1

cqi,ct j ≥ 1 (6)

• Task Reachability. For each task, there exists a
platform type and a path from the base to the task’s
vertex such that the platform type is compatible
with all the path’s edges trafficabilities. Formally,
∀i ∈ [1..nT ],∃ j ∈ [1..nP],∃k ∈ N∗,(v1, . . . ,vk) ∈
[1..nV ]

k, s. t.

v1 = 1,vk = tvi (7)

∀r ∈ [1..k−1]2, evr ,vr+1 = 1 (8)

rp j,revr ,vr+1
= 1 (9)

Those two assumptions ensure that for each task in the
mission, there exists an agent pattern compatible with the
task perform it.

3.2.3. Decision Variables

We present here the decision variables that must be as-
signed a value when solving an ACP. To do so, we first
formally define an agent pattern.

For a given catalog cat, an agent pattern is a tuple
acat = (ap,AQ) where :

• ap is an integer in [1..nP] that represents the plat-
form of catalog cat associated with acat.

• AQ = (aqi)i∈[1..nQ] is the acat equipment vector of
size nQ. For all equipment type i ∈ [1..nQ], aqi is
an integer in [1..maxQ] that represents the number
of equipment type i present in acat.

For a given catalog cat, the objective of ACP is to
compute a tuple Tcat = (1, . . . ,nT ) where each element
is an index of an agent pattern, as defined previously, and
nT the number of elements in the tuple.

As we do not consider any constraint in this paper,
there are nT = nP ·nmaxQ

Q possible agent patterns. In real
world applications, the ACP should of course satisfy some
constraints (e.g. max payload, mission’s budget, etc.) and
could optimize some criteria (e.g. cost minimization).
This is out of scope of this paper, and so are the precise
definitions of platform and equipment attributes related
to them (such as weight, price, etc.). Note that even with
constraints consideration, the vector Tcat might be too
large to be exhaustively explored.

3.3. Toy Problem ACP
We consider the mission m defined in Subsection 2.3.

We define the catalog cat the following way.

• The platform types vector is P =
(︁
1 2

)︁
, where

1 is "UAV" (Ê) and 2 is "rover" (�).

• The equipment types vector is Q =
(︁
1 2

)︁
, where

1 is "camera" (�) and 2 is "trunk" (�).

12



Platform Equipment

AgentPattern

Agent

Fleet

Stock

FCP

1..*

1

*

**

1

1

output

*

Legend

ACP Solution
FCP Input

FCP Decision

Figure 5: UML representation of the FCP.

• the maximum number for each equipment instance
on an agent pattern is maxQ = 1.

• The platform/trafficability compatibility matrix is

RP =

(︃
0 1
1 0

)︃
. In this example, rp1,2 = 1 holds,

meaning that platform 1 ("UAV") is compatible
with the trafficability 2 ("aerial"). However, as
rp1,1 = 0, platform 1 is not compatible trafficabil-
ity 1 ("terrestrial").

• The equipment/capability relation matrix is CQ =(︃
1 0
0 1

)︃
. In this example, rp1,1 = 1 holds, mean-

ing that the equipment 1 ("camera") provides the
capability 2 ("observe"). However, rp1,2 = 0,
which means that this equipment does not provide
capability 2 ("carry").

The two following agent patterns belong to Tcat:

• a1 = (1,
(︁
1 0

)︁
) is a UAV equipped with one

camera and zero trunk.

• a2 = (2,
(︁
1 1

)︁
) is a rover equipped with one

camera and one trunk.

There is a total of nT = 6 possible agent patterns (Tcat =
(a1, . . . ,a6)).

4. Fleet Configuration Problem
In this section, we present the model associated with the
Fleet Configuration Problem (FCP), which aims at decid-
ing the composition of the fleet wrt. the available stock.

4.1. Description
Fig. 5 contains a UML representation of the Fleet Config-
uration Problem. The FCP class takes as an input the set
of AgentPattern computed by the ACP, as presented in
the previous section. Its output is a Fleet, i.e. a collection
of Agents, where each Agent is associated to a unique
AgentPattern.

In order to model the fact that equipment and platform
are available in limited quantities, we define the class
Stock. Such a class is associated to a set of Platforms
and a set of Equipments. The FCP takes an instance of
Stock as an input. Even if it is clear that the stock will
impose hard constraints on FCP, the precise formalization
of these constraints is left for future work.

4.2. Formalization
We first formalize the inputs of the agent configuration
problem, then define the decision variables and illustrate
the formalization on the toy example.

4.2.1. Inputs

Let cat be a catalog. The FCP associated to this catalog
has two inputs:

• A stock associated with cat, denoted scat, and de-
fined by a pair (Ps,Qs) where:

– Ps = (pi)i∈[1..nP] is a vector of size nP such
that for each platform type i ∈ [1..nP] in cat,
pi ∈ N∗ defines how many type i platform
instances are in the stock.

– Qs = (q j) j∈[1..nQ] is a vector of size nQ
such that for each equipment type j ∈
[1..nQ] in cat, q j ∈ N∗ defines how many
type j equipment instances are in the stock.

• A vector of agents pattern Tcat. Such a vector can
for instance come from the output resulting from
the ACP solving.

4.2.2. Decision Variables

Given a catalog cat, a stock scat on this catalog, and Tcat
a vector of the agent patterns, a fleet is a tuple fscat ,Tcat =
(na,Af) where:

• na is the size of the fleet.

• Af = (ai)i∈[1..na] is the finite vector of size na of
agents in the fleet such as, for each i ∈ [1..na],ai ∈
[1..nT ] is the index of the agent pattern of the
agent i in the fleet.

Note that the model allows to have the same agent
pattern present several times in Af, representing the fact
that there are some identical agents in the fleet.
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4.3. Toy Problem FCP
We consider the mission m defined in Subsection 2.3,
the catalog cat and the agent patterns Tcat defined in
Subsection 3.3.

We define the stock scat the following way.

• The platform instance vector is Ps =
(︁
2 1

)︁
,

meaning that there are 2 instances of type 1 plat-
form ("UAV" - Ê) and 1 instance of type 2 plat-
form ("rover" - �) in the stock.

• The equipment instances vector is Qs =
(︁
2 1

)︁
.

In this example, there are two instances of type
1 equipment ("camera" - �) and one instance of
type 2 equipment ("trunk" - �) in the stock.

With this stock, it is possible to configure several fleets of
agents. For instance, we define two fleets as follows:

• f1
scat ,Tcat

= (1,(a2)), is a fleet composed of a single
agent with the pattern a2 (a rover equipped with
one camera and one trunk - �+ �+ �).

• f2
scat ,Tcat

= (2,(a1,a2)), is a fleet composed of two
agents with the respective patterns a1 (a UAV
equipped with one camera - Ê+ �) and a2 (a
rover equipped with one camera and one trunk -
�+ �+ �).

5. Plan Configuration Problem
In this section, we present the model associated with the
Plan Configuration Problem (PCP), which aims at decid-
ing the agents’ positions and tasks all along the mission.

5.1. Description
The plan configuration is the last problem to solve in order
to get a solution for the multi-level configuration problem.
As illustrated on Fig. 6, it takes as input a Mission and a
Fleet. Its output is a Plan which consists of an AgentPlan
for each Agent in the fleet. For each agent in the fleet, an
AgentPlan describes exhaustively at any given time step
the position of the agent and the task currently executed,
if any.

5.2. Formalization
We first formalize the inputs of the plan configuration
problem and then define the decision variables.

5.2.1. Inputs

For a catalog cat, a stock on this catalog, scat, the PFD
associated to this stock requires two additional inputs:

AgentFleet

Plan AgentPlanPCP

Mission

*

*

1

1
1

1

output

Legend

FCP Solution
PCP Input

PCP Decision

Figure 6: UML representation of the PCP.

• a mission m,

• a fleet fscat ,Tcat .

5.2.2. Decision Variables

In order to represent the position of each agent in the so-
lution plan, we use binary decision variables (Vpl matrix)
that indicate whether an agent is at a given position at
each time step. Similarly, for each task, we use binary
decision variables indicating whether an agent executes
this task at the time step (Tpl matrix).

Formally, for a catalog cat, a stock on this catalog, scat,
a mission m, a fleet fscat ,Tcat , a plan is a tuple plm, fscat ,Tcat

=

(H,Tpl,Vpl) where:

• H ∈ N∗ is the temporal plan horizon.

• Tpl = (tpli, j,h)i, j,h∈[1..na]×[1..nT ]×[1..H] is the allo-
cation of tasks over agents for each time steps,
represented as a tensor of size na · nT ·H. For
each agent i ∈ [1..na], each task j ∈ [1..nT ] and
each time step h ∈ [1..H], tpli, j,t = 1 if the agent
ai ∈ Af is executing the task j at the time h. It
equals 0 otherwise.

• Vpl = (vpli, j,h)i, j,h∈[1..na]×[1..nV ]×[1..H] is the posi-
tion of the agents for each time steps, defined by a
tensor of size na ·nT ·H. For each agent i ∈ [1..na],
each task j ∈ [1..nT ] and each time step h ∈ [1..H],
vpli, j,t equals 1 if the agent ai ∈Af is at the vertex
j at the time h. It equals 0 otherwise.

Through this plan formalization, moves of agents are
not explicitly described, but this piece of information
could be retrieved through their positions.

5.3. Toy problem PCP
We consider the definitions of mission m, catalog cat,
introduced in the three previous examples.
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Figure 7: Execution of plan plm, fscat ,Tcat
from Example 5.3: starting from the base, the UAV moves to the ruins while the rover

moves to the aid camp; then, they both perform the required tasks in their respective locations; finally, they both come back to
the base.

We consider the following plan for the fleet
f 2
scat ,Tcat

= (2,(a1,a2)):

plm, fscat ,Tcat
= (3,

(︁
Tpl1 Tpl2

)︁
),
(︁
Vpl1 Vpl2

)︁
), il-

lustrated in Fig. 7, where:

• Tpl1 =
(︃

0 1 0
0 0 0

)︃
is the task allocation matrix

of the first agent of the fleet, that has pattern a1
(platform Ê). It performs the task "explore the
ruins" (☼) at time step 2.

• Vpl1 =

⎛
⎝

1 0 1
0 1 0
0 0 0

⎞
⎠ describes the movement of

the first agent of the fleet, that has pattern a1. It
starts at the "base" (c) than goes to the "ruins"
(r) and comes back to the "base" (c).

• Tpl2 =
(︃

0 0 0
0 1 0

)︃
is the task allocation matrix

of the second agent of the team, with pattern a2
(platform �). It performs the task "deliver sup-
plies" (g) at the time step 2.

• Vpl2 =

⎛
⎝

1 0 1
0 0 0
0 1 0

⎞
⎠ describes the movement of

the second agent of the team, with pattern a2. It
starts at the "base" (c) than goes to the "aid camp"
(_) and comes back to the "base" (c).

Note that the time steps used in that example plan give
a macro view of the agents actions. It would be possible
to have a much finer discretization of the time in order to
handle temporal constraints such as task duration, or edge
traversal duration.

6. Conclusion
In this paper, we model and formalize the multi-level
configuration problem for a fleet of heterogeneous agent.
This problem is decomposed into three problems, ACP,
FCP and PCP and for each of them, we formally define
their inputs and their decision variables and we illustrate
them on a toy problem. We focus on Search and Rescue
missions where tasks have to performed on some nodes
of a given graph.

The work presented in this paper is a first step for solv-
ing the multi-level configuration problem. As mentioned
in the paper, the next step is to formally define the set of
constraints and the eventual criteria associated to ACP,
FCP and PCP. To do so, it will be possible to study the
literature associated with each problem, such as [1] for
ACP, [3, 6] for FCP and [7, 8, 9] for PCP.

Then, we have presented the three configuration prob-
lems independently but in practice, they are interleaved.
For instance the output of ACP is an input of FCP, and the
output of FCP is an input for PCP. In the other direction,
the evaluation of solutions produced by PCP and FCP can
influence the choices made in ACP. If the evaluation of
the overall multi-level configuration solution is not satis-
factory, there might be several interactions between each
level before converging (if any convergence is possible).
In order to avoid these interactions, it would be possible
to solve all the configuration problems simultaneously.
Some works have started contributing towards that ob-
jective [10, 11, 12, 2]. Following those works, we aim
at proposing a global solver/architecture for solving the
multi-level configuration problem.

Finally, we have considered here a simple model of
a Search and Rescue mission. It would be possible to
make it more realistic in several ways. For instance, it
would be possible to consider: more complex mission (e.g.
with multiple bases), autonomy constraints on agents forc-
ing them to recharge in some specific locations, more
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complex tasks (e.g. requiring multiple capabilities, or
requiring synchronisation between multiple agents), a
non-deterministic setting (e.g. uncertainty on tasks dura-
tion) and a dynamic environment (e.g. discover the edges
trafficability, agent’s loss).
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Abstract
Car manufacturers offer their customers an enormous number of configuration options to individualize their vehicles. While
configuration options mostly covered physical components in the past, over the last years the number of software-related
options has increased immensely. Existing systems for car configuration should thus be optimized and extended to handle
the shift towards more software-related features, e.g. for automatic driver assistance systems. In this article, we highlight
different problems and properties combined systems of hardware-software configurations have to tackle in an automotive
context.

Keywords
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1. Introduction
Modern car manufacturers offer a vast number of config-
uration options for their products. In the past, these op-
tions covered parts and functionality that were primarily
based on physical components. With the ongoing elec-
trification of cars, the rate of functionality implemented
in software and thus also the variance in software is in-
creasing [1].

But not only the number of configuration options is in-
creasing, the same holds for the complexity of their in-
terdependencies. Some options are mutually dependent,
others are mutually exclusive. This results in an enor-
mous configuration space with more than 10100 possible
constructable (valid) configurations for a product line
[2]. The inherent complexity of the problem challenges
automotive manufactures in all stages of the product life-
cycle, from development, through production, sales to
after-sales. Due to the increasing importance of software
in this context, hardware-software co-configurations are
playing an increasingly substantial role.

In this publication, we describe upcoming or already ex-
isting problems that arise in the context of increasingly
software-driven vehicles.
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2. State of the Art
Classically, the possible configurations through which
a car can be realized are represented by configuration
options. In addition to different color finishes, these can
also describe different engine designs, or optional extras
such as an improved infotainment system. An existing
order, i.e. a set of configuration options, can then be
translated into the physical parts that are needed to man-
ufacture the particular car instance.

Historically, with the increasing emergence of software
functionality and the associated ECUs (electronic con-
trol units) in the car, the existing hardware configuration
systems were adapted to also manage software config-
urations. But, as automotive software can have a wide
variety of requirements for the installed hardware (e.g.
sensors for autonomous driving systems), software con-
figuration cannot be treated independent of the hardware
configuration. However, this close connection is often
not reflected in current configuration systems, where
mostly software configuration is treated as a second con-
figuration step, after the physical components have been
selected and configured.

Additionally, software often comes with configurable
parameters that can be set to different values. As an ex-
ample, emergency call numbers differ from country to
country and have to be set accordingly. The basic func-
tionality of the software remains the same, independent
of the value the parameter is set to. Thus, instead of writ-
ing software for each possible parameter setting, an ECU
runs through an additional configuration step, where
correct parameter values are written to the ECU (special
bits get set in the programmable ROM of the ECU). The
high-level software then can adapt its functionality by
reading the corresponding bits in the ROM. In the au-
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tomotive sector, this configuration step is often called
variant coding [3].

Typically, in the automotive industry, configuration op-
tions are realized through Boolean variables, so-called
codes, where each code is represented by a variable name
a.k.a. identifier. An option selected by a customer is then
reflected by setting the corresponding code to true. Be-
sides codes to register customer’s selections, internal
codes are used, for example, there can be codes repre-
senting spatial regions and codes indicating if the car
possesses left or right steering.

The set of valid configurations is described by a set of
Boolean formulas (rules, constraints) that all have to be
satisfied in a valid order. Such constraints can express,
e.g., mutual exclusivity, as in the selection of left-hand
or right-hand steering. But often constraints are much
more evolved, encompassing many dozens of codes.

Example:
𝑐1 → ¬𝑐2 ∧ ¬𝑐3

with codes 𝑐1, 𝑐2, 𝑐3. In other words, if we select code
𝑐1, codes 𝑐2 and 𝑐3 cannot be selected.

Handling of parameters is mostly done in separate
systems, where valid values (or sometimes even valid
combinations of values) are specified via tables listing
the admissible settings.

3. Challenges
Since software has become central in modern cars, the
question arises whether existing systems, into which the
software configuration is mostly just cobbled in, still meet
all the necessary or desired requirements.

Until today, the configuration process is still mostly
divided into two steps. First the hardware configuration,
then – on top of it – the software configuration. However,
it is questionable whether this two-step process is still
the best approach for existing and future use-cases.

In this section, we present various challenges that
prevail in current hardware-centric configuration sys-
tems and might require additional consideration in future
hardware-software co-configuration systems.

Hardware Upgrade. Automotive manufactures re-
cently started to offer subscription models for features
that are not present at the time of sale, but can be
retrofitted – often by a simple software switch – into
already delivered vehicles. For this, the manufacturers
need the possibility to enable functions for vehicles in the
field. Typically, this also requires a check, whether the
hardware of the car supports the extended functionality.

It might even be the case that an OEM (Original Equip-
ment Manufacturer) allows a retrofit including an update

of hardware components. This can occur as follows: In a
revision of an existing car series, the hardware is slightly
modified and a new software function becomes available.
Now, this software function could potentially also be
provided in the older model, if the necessary hardware
can be retrofitted. Checking whether such an update is
possible (and which parts have to be exchanged) requires
access to the exact configuration of the delivered car as
well as configuration systems that have knowledge about
constraints for historic configurations, possibly going
back to several years or even decades.

OTA Update. Over-the-air (OTA) software updates
present unique challenges for automotive manufacturers.
Firstly, the vehicle’s software configuration must be fully
defined in both hardware and software terms, ensuring
that only compatible software satisfying all dependencies
is delivered to the vehicle. Additionally, the delivered
software must be correctly configured through variant
coding, based on the underlying hardware configuration.
Therefore, a combined consideration of hardware and
software is highly important

Missing Expert. Up to day, software updates are still
performed in repair shops by an expert. Manufacturers
profit in this context from the expertise of the working
staff. Occurring errors can instantly be analyzed by a
qualified person. In the best case, the underlying error
can be directly fixed by the repair shop staff. Especially
in the case of OTA updates, this expertise is missing. In
particular, problem analysis and troubleshooting pose
a special challenge, as they all have to be done before
delivery of the update or – for residual errors – must be
fixable remotely, in the worst case by a downgrade to the
previous version.

Certification. The automotive sector is highly stan-
dardized and regulated. Automotive manufacturers must
guarantee that their products satisfy all kinds of stan-
dards from different domains. The regulations classically
certify a vehicle to satisfy predefined security and safety
standards. With the increasing use of driver assistant
systems in the automotive sector, the certification re-
quirements, especially in software, grow. In particular,
lawmakers want to know in the future exactly which soft-
ware is delivered in which car. An example is the UN ECE
regulation 156,1 describing the requirements for a soft-
ware update management system (SUMS) and the future
scope for type approval procedures under consideration
of the software.

1https://unece.org/transport/documents/2021/03/standards/un-reg
ulation-no-156-software-update-and-software-update
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Frequent Updates. Software updates can be much
more frequent than hardware revisions. As software is
in an increasing manner not only security but also safety
relevant, software updates may have the need to be rolled
out quickly. However, as software changes can impact
other components of the vehicle, an automatic validity
and conformity check of the target vehicle configuration
is required. In the best case, after a fix in an existing
software package, a package manager should compute a
new valid configuration, including the fixed software.

Vehicle function distribution. The distribution of
functions in a vehicle and their mapping to ECUs is still
done mostly manually. However, with the rapidly chang-
ing software architectures in vehicles, the distribution
is getting more and more complex. To simplify the ini-
tial process in development, algorithmic support is an
obvious solution. This requires a detailed specification
and documentation of dependencies of the software to
be distributed. This initial distribution, we call it static
vehicle function distribution, can also be extended to the
dynamic case, in which functions can be (re-)distributed
in real-time to corresponding computing nodes. This
allows an improved energy usage, as ECUs can be turned
off and on if needed – complex algorithms might even
be run in the cloud. For both use cases, a complete de-
scription of the hardware and software dependencies is
required.

Version Constraints. For software configurations, the
specific version of a software package and its dependen-
cies are vital information. In a major software release,
dependencies might change drastically, reflecting the
changed and extended behavior of the software. How-
ever, version constraints are mostly documented in a
numeric way, e.g. via Semantic Versioning.2 Whether
the currently employed Boolean formalization of con-
straints is still the best way to address the problem is
questionable.

Variance over time. If software updates can still be
carried out for older vehicles, new functionalities can also
be integrated into existing fleets if technically feasible.
Determining which vehicle configurations can still be
supplied with new software, as well as documenting and
verifying this, is a major challenge given the enormous
space of possible configurations. Enabling this variance
over larger timeframes will require new mechanisms and
considerations.

Software Packaging. In classic computer systems,
software configuration problems are often solved with
the help of package managers. However, automotive

2https://semver.org

software has additional constraints. In addition to the
hardware dependency, there are also complex parame-
terizations (variant coding) and the need for diagnostic
options. This raises the question of how to define soft-
ware components or packages in order to be able to adopt
existing concepts.

4. Related Work
How to handle hardware/software configurations in the
automotive sector has been an active point of research
and discussion for several years now [4, 5]. In a survey
of German car manufacturers, Sax et al. [6] claim that
new ways of checking the consistency of major, regular
software updates is an important aspect for not hindering
fast development of new functions in the future.

The configuration problem in the automotive industry
and solutions to it were already described in the early
2000s. Sinz [7] describes a rule system based on Boolean
logic. Here, not only checking individual configurations
is covered, but also ways to determine common proper-
ties of all valid configurations. Moreover, the mapping
from code sets into concrete physical components is also
considered. In a later publication, Sinz [8] also describes
the verification of such rule systems in order to detect
and minimize errors at an early stage. Astesana et al. [9]
on the other hand, describe vehicle configurations by us-
ing a CSP framework, with Renault as a case study. More
recent publications also deal with the topic of classic
configurations. Bischoff et al. [10] describes a graphical
editor for visualizing and editing item selection rules.

In addition to the control systems mentioned above, there
are other approaches to describing variability in general.
One of them is feature modeling. In this, the configura-
tion options (features) are often represented in the form
of trees, which represent the relations between the fea-
tures. The analysis of feature models is often performed
with the use of SAT solvers [11]. However, analysis ap-
proaches using SMT solvers have also been part of recent
research [12].

In the area of classic computer systems, configurations
are often found in the area of package management
and dependency solving. These are mostly so-called
component-based systems such as GNU/Linux distribu-
tions (e.g. Debian 3). These contain metadata for software
packages, which the package managers utilize in their
search for valid configurations. While most package man-
agers initially used ad-hoc solvers [13], nowadays more
efficient algorithms from the SAT or CSP community are
usually employed [14]. Pinckney et al. [15] recently pro-
posed a package solver, PacSolve, for NPM which uses

3https://www.debian.org
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an SMT approach instead of SAT/CSP solvers. As an
alternative to SAT and SMT, there are also publications
that describe and solve package update problems with
Answer Set Programming [16, 17].

The distribution of different functions in the architecture
of a vehicle represents an enormous challenge in mod-
ern vehicles. Ruhnau et al. [18] take a first step towards
mastering this challenge by describing an ontology for
function distribution, covering both static and dynamic
distribution.

5. Conclusion
In this paper, we have described various challenges that
exist in the area of hardware/software configurations in
the automotive sector. Many of these challenges arise
from the increasing complexity and relevance of software
in vehicles. We have listed that research work already ex-
ists for some of the topics. For others, there are promising
approaches from related problem areas, the suitability of
which we will investigate in more detail in future work.
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Abstract 
This study contributes to the evolving dialog on sustainable practices, emphasizing the strategic 
integration of life cycle assessment (LCA) in configurators to comply with new regulatory standards 
and achieve environmental objectives. We investigated the application of configurators integrating 
LCA through a comparative analysis of two case studies in the construction industry: a prospective 
approach applied during the early design stages, and a retrospective approach using post-design. Our 
findings illustrate that prospective LCA configurators can significantly influence early design choices 
and facilitate preliminary environmental impact assessment. Conversely, a retrospective LCA 
configuration approach offers more precise and accurate assessments based on finalized designs, 
enabling detailed LCA reporting and saving significant time and effort. The analysis underscores that 
the application of these approaches is not mutually exclusive. This suggests that a combined strategy 
could maximize the potential of these tools. Such a combination would facilitate a more dynamic 
interaction between the early and later design stages, ensuring that the environmental assessment is 
thorough and iterative. Additionally, it would help the company gain in-depth insights into the 
environmental aspects of the design process. 

Keywords  
configurators, construction, environmental impact, life cycle assessment (LCA), sustainability 1 

1. Introduction 
Sustainability is widely recognized as a multifaceted 
concept encompassing three dimensions: 
environmental, social, and economic. Notably, the 
environmental dimension plays a foundational role 
given its direct influence on socioeconomic elements [1]. 
In assessing environmental impact, particular attention 
has been given to the environmental impact of products 
and services. One of the most widespread methodologies 
for assessing environmental impact is life cycle 
assessment (LCA) [2].  

In this context, the European Commission has 
highlighted the urgency of making sustainable products 
the norm across Europe by setting stricter product 
design and lifecycle standards [3]. As a result, the 
increasing focus on assessing environmental 
performance is evidence of the clear need for digital 
tools to support this process. 

Configurators are a widespread technology that 
emerged in the late 1970s as decision support systems 
designed to streamline the specification process during 
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product customization [4]. They allow users to select 
from various options and configurations of a product, 
automatically adjusting components and features 
according to user choices. This technology enhances the 
decision-making process by providing immediate 
feedback on potential configurations, thereby 
significantly improving speed, quality, and efficiency 
[5].  

Additionally, configurators enhance efficiency by 
automating the creation of crucial documents, such as 
quotes and bills of materials. This automation ensures 
accuracy and consistency in documentation; it is 
particularly valuable in complex configurations, where 
manual processes are prone to errors [6].  

The integration of LCA with configurator 
technology is quite promising for enhancing sustainable 
product development. By embedding environmental 
assessment capabilities in configurators, companies can 
provide real-time data on the environmental impacts of 
various product options. This integration can facilitate a 
more informed design, incorporating environmental 
consequences alongside traditional factors, such as 
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pricing. Furthermore, configurators can enhance the 
communication of environmental assessment results, a 
crucial aspect of LCA [7]. 

Despite the significant potential of this technology, 
research on the integration of LCA into configurators is 
still in its early stages. However, over the last five years, 
this topic has increasingly captured academic interest, as 
reflected in numerous recent publications [8–19].  

Moreover, no research has examined the different 
implications of LCA in either a prospective or 
retrospective manner within the context of 
configurators. This gap in the literature leads to the 
following research question: 

RQ: What are the implications of a proactive and 
retrospective of life cycle assessment through 
configurators? 

We examined two different case studies of 
companies that have successfully developed 
configurators with LCA. The first case study involved 
using this technology during the early design phase to 
evaluate various design alternatives. The second case 
study described how a configurator, used over finalized 
designs, enables precise and accurate LCA. Both case 
studies pertain to the same sector: the construction 
industry. 

We explored these case studies to assess and 
compare their impacts, thereby contributing to the 
research community’s understanding of how 
configurators can be effectively employed to improve 
environmental development. 

The structure of this paper is as follows. In Section 
2, we present the theoretical background of LCA 
typologies in terms of application timing. and we review 
the academic research conducted on configurators, 
integrating LCA considerations. In Section 3, we 
describe the methodology used for analyzing the 
comparative case studies, and we introduce both case 
studies. In Section 4, we present the findings from the 
analysis, and in Section 5, we discuss the implications of 
the results. Finally, in Section 6, we summarize the key 
conclusions. 

2. Theoretical background 

2.1. Prospective and retrospective LCA 

The use of LCA is subject to different contexts and can 
be driven by distinct aims and goals. In terms of the time 
perspective, LCA can be divided into two primary 
categories [20, 21]. On the one hand, retrospective LCA 
is aimed at assessing the effects of something that 
occurred; on the other hand, prospective LCA is a 
forward-looking approach [20, 21]. 

Retrospective LCA evaluates the environmental 
impacts of existing products based on actual data. It 

helps to understand and improve the environmental 
performance of current technologies [20, 21]. 

On the other hand, prospective LCA evaluates the 
potential environmental impacts of products before they 
are implemented. It is used to guide decision-making 
during the development phase by predicting future 
impacts [20, 21]. 

2.2. Configurators and sustainability 

The increasing focus on environmental considerations 
in the use of configurators has become a significant area 
of interest over the past five years. This trend is 
noticeable in the academic community and across 
various industries. For instance, standard product 
configuration software applications such as Tacton CPQ 
are developing their environmental impact assessment 
capabilities by incorporating LCA features into their 
applications [22]. 

Various researchers have also turned their attention 
to this subject in the academic sector. Given the novelty 
of the topic, the range of issues discussed in these studies 
regarding the integration of LCA and configurators is 
quite diverse, demonstrating the broad scope of the field. 

Hankammer et al. [13] extensively reviewed over 
900 configurators, providing valuable insights into 
enhancing sustainability features across sectors. 
Responding to the need for streamlined LCA 
assessments, Spreafico et al. [8] introduced I-Tree, a tool 
that leverages real-time data for efficient eco-
assessment. Similarly, Rousseau et al. [10] explored the 
impact of environmental indicators in configurators, 
focusing mainly on sustainability enhancement in 3D 
printing. 

To address the nexus between product variety and 
sustainability, Medini et al. [9] proposed a 
comprehensive framework, while Wiezorek and 
Christensen [14] focused on refining configurator 
architectures to enable better sustainability data 
communication. In consumer electronics, Hankammer 
et al. [11] found that default sustainable options 
significantly influence consumption patterns. Campo 
Gay et al. [18] analyzed the successful integration of 
LCA into configurators, guiding users toward 
sustainable choices. Focusing on sustainability 
integration, Christensen and Wiezorek [12] aligned 
configurators with ISO 14040 standards, while Campo 
Gay and Hvam [17] demonstrated the transformative 
impact of sustainability-focused configurators, 
particularly in construction. 

Regarding configurators’ development, Piroozfar et 
al. [16] discussed solutions tracking environmental 
impact, while Helo et al. [15] introduced software 
streamlining environmental assessments in supply 
chains. Moreover, Jakobsen et al.’s [19] call to redesign 
product configuration systems for better sustainability 

22



integration tied these efforts together, portraying a 
concerted push toward deeper sustainability 
considerations in configuration processes across sectors. 

All of these efforts highlight a strong trend toward 
deepening sustainability considerations within 
configuration processes. 

3. Methods 
Given that the advancement of configurators 
incorporating LCA is still at an early stage, elucidating 
their full potential and application is a notable challenge. 
To address this gap, we conducted a qualitative case 
study analysis comparing two distinct applications of 
configurator systems within the construction industry. 
Our objective was to delve deeply into their utilization 
of LCA and compare their effectiveness to gain in-depth 
insights. 

As highlighted by previous research [23,24], case 
studies are essential for understanding the key variables, 
the connections between them, and the reasons behind 
these relationships.  

We identified two case companies using 
configurators for environmental impact assessment, 
employing standard LCA methodology. These 
companies operate within the construction sector in 
Sweden.  

The main reasons are first, that, according to the 
United Nations Environment Programme (UNEP), the 
building and construction industry stands as the most 
polluting industry sector, responsible for 38% of all 
energy-related CO2 -eq emissions [25]. Consequently, 
the construction sector has played a pioneering role in 
shaping standards and regulations, as exemplified by the 
European standard EN 15804 for environmental product 
declarations [26], aligned with international LCA 
methodology standards ISO 14040 and ISO 14044 [7,27]. 

Second, Sweden has been a leading country in terms 
of introducing new policies and regulations for the 
construction sector. Currently, it is compulsory to 
declare an LCA on new buildings, and beginning in 2025, 
new projects must adhere to statutory limits on CO2-eq 
emission per m2 per year across the life cycle [28]. 

Consequently, all these factors motivate the 
construction sector in Sweden to seek out new tools and 
solutions to support their initiatives and make the 
studied companies ideal case studies. 

3.1. Data gathering 

To analyze the first case company, we conducted a series 
of systematic observations of the configuration process. 
We evaluated the experiences of the primary 
configurator implementor involved in the project over a 
period of four years. 

For the company described in the second case, we 
began with an initial semistructured interview based on 
the main research question. This was followed by six 
semistructured interviews to understand the company’s 
working processes and configuration systems. We 
finalized our analysis with a review of the results by one 
of the main configurator developers at the company. 

3.2. Case company 1 

The company is a subsidiary of a large international 
corporation that operates in Sweden and has 
approximately 350 employees. It specializes in 
developing, manufacturing, and marketing cement for 
infrastructure, such as roads, tunnels, bridges, and 
residential, commercial, and industrial buildings. 

Recognizing the upcoming regulations that will take 
effect in 2025, which impose limitations on new 
construction projects, the company saw the need for an 
early design tool to assist in this process. They 
developed an LCA configuration to facilitate and 
promote environmentally friendly design options in the 
initial stages of projects when decisions are more 
flexible and have fewer resource implications. This tool 
assists users in the educational process, encouraging the 
consideration of less conventional options and more 
environmentally sustainable solutions. 

Given the high level of uncertainty in decision-
making during the early design phase of projects, a 
preliminary LCA was performed. In addition to serving 
as a decision support tool to address the complexity of 
environmental and technical requirements, the tool was 
modeled to quantify LCA to determine the margin of 
safety concerning maximum statutory limits. 

The company has collaborated with external 
consultants over the past four years to develop this tool, 
reaching the final testing phase in the first quarter of 
2024. Ownership of the tool was transferred to the 
company during the second quarter of 2024, with full 
integration into the company’s workflow scheduled for 
completion by June 2024. 

3.3. Case company 2 

The company is a small enterprise that has been based 
in Sweden since 2018 and employs 35 people. It 
specializes in designing and planning the construction 
aspects of projects. The company uses a configuration 
system approach to streamline its building design 
process, which optimizes the overall process. 

In response to new regulations requiring LCA 
declarations for construction projects since 2022, the 
company has integrated LCA evaluation into its 
established configurators. To facilitate this, the company 
uses a commercial solution named One Click LCA,   a   
leading   cloud-based   software   solution   for  
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Table 1 
Company Case 1: Early Design Stage Configurator 
Usage (Prospective) 

Aspect Description 

Stage of use Used in the very early design 
stages for planning 

Main purpose of the 
LCA integration 

To make environmentally 
conscious decisions and 
compare different solutions 

LCA approach Prospective, integrating LCA 
from the start of a design 

Output Overview of environmental 
impacts and technical 
aspects 

Required 
configuration inputs 

Preliminary technical 
requirements and 
environmental priorities 

LCA integration 
kind with the 
configurator 

During the configuration. 

Impact on the 
design process 

Significant influence over 
the design approach 

Environmental 
focus 

Screening LCA, preliminary 
impact assessments 

Suitability for 
Projects 

New projects with undefined 
design parameters 

creating Environmental Product Declarations (EPDs) 
and LCA reports for building materials and products. 

Consequently, the company has updated its 
configuration system to automatically generate a 
comprehensive material list with detailed material 
quantities in kilograms. These data can then be 
seamlessly processed by One Click LCA and integrated 
into the company’s database to produce comprehensive 
EPDs. 

4. Results 
First, we characterized how each application on the 
configurator integrating LCA capabilities works and 
impacts the building design process, focusing on when 
they are used, what outputs they produce, and their 
ultimate influence on design decisions and 
environmental assessments.  

Table 1 illustrates the case of Company 1. The 
application is employed during the early design stage of 
the building process, representing a prospective 
approach.  

 
 
 
 
 
 
 

Table 2 
Company Case 2: Post-Design Specification of 
Configurator Usage (Retrospective) 

Aspect Description 

Stage of use Used after the building design 
is finalized 

Main purpose of 
the LCA 
integration 

To create detailed LCA reports 

LCA Approach Retrospective, LCA applied to 
finalized designs 

Output Detailed environmental impact 
reports based on specific 
materials used and their 
quantities 

Required 
configuration 
input 

High-level drawing 
specifications  

LCA integration 
kind with the 
configurator 

After configuration, based on 
the automatic generation of 
specifications (i.e., a part list 
with quantities), the LCA is 
performed through an external 
tool (One Click LCA). 

Impact on the 
design process 

No or minimal impact on the 
design. 

Environmental 
Focus 

Detailed LCA, focusing on the 
quantifiable impacts of 
materials 

Suitability for 
Projects 

Projects with set designs 
needing LCA reflection 

In contrast, Table 2 presents the case of Company 2, 
where the application is used after the design has been 
finalized, adhering to a retrospective approach. 

Subsequently, we examined the implications of 
choosing either a prospective or a retrospective 
approach to how a new company’s resources, design 
process, and overall strategy for sustainability are 
impacted. This should help in understanding the 
strategic differences between these two approaches. 
Table 3 outlines the considerations for a prospective 
approach, whereas Table 4 details the considerations for 
a retrospective approach when LCA is integrated into 
configurators. It is important to note that retrospective  
design   is   considered   viable   only   for companies that 
have already implemented configurators. Implementing 
a retrospective approach without pre-existing 
configurators would be significantly costly and 
inefficient. 
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Table 3 
Considerations for a Prospective Approach to 
Configurators Integrating LCA 

Feature Evaluation Explanation 

Iterative 
design 

Yes Facilitates 
iterative design 
adjustments 
during early 
stages 

Approach to 
design 

Prospective Used to influence 
initial design 
choices and 
integrate LCA 

Accuracy Low Estimates are 
broad and based 
on preliminary 
data 

Influence in 
design 

High Can significantly 
alter design 
outcomes 

LCA is the 
main aim of 
the 
configurator 

Yes The primary aim 
is to guide 
environmentally 
conscious design 

Further 
integrations 

No Standalone use 
for initial design 
stages 

Resource 
investment in 
developing the 
configurator 

High Requires the 
development of a 
LCA focused 
configurator  

Cost Medium/High Licenses and 
running cost of 
configurator tool 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 
Considerations for a Retrospective Approach to 
Configurators Integrating LCA  

Feature Evaluation Explanation 

Iterative 
design 

No The LCA 
evaluation occurs 
once the 
configuration is 
finalized 

Approach to 
design 

Retrospective Used after design 
choices are made 

Accuracy High Calculations are 
detailed, based on 
precise 
information 

Influence in 
design 

None or 
minimal 

The LCA is 
carried out to 
reflect on the 
design rather 
than modify it 

LCA is the 
main aim of 
the 
configurator 

No LCA is secondary 
and happens 
thanks to the 
configuration 

Further 
integrations 

Yes Requires 
integration with 
One Click LCA 

Resource 
investment in 
developing 
the 
configurator 

Low Utilizes existing 
configurator 

Cost Medium/High While the 
configurator is in 
place, there are 
costs for licenses 
on external LCA 
databases. 
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5. Discussion 
A prospective approach in configurators integrating 
LCA allows for the early detection and mitigation of 
environmental impacts. In contrast, a retrospective 
approach ensures that these mitigations are based on 
precise, real-world data, ultimately enhancing the 
accuracy and reliability of environmental assessments. 

Despite the benefits of a prospective configurator 
integrating LCA, the higher cost and resource 
requirements associated with developing and 
maintaining configurators must be considered. The 
investment in licenses and running costs of 
configuration applications can be substantial, but the 
long-term benefits of reduced environmental impacts 
and alignment with policies and requirements can 
compensate for initial costs.  

On the other hand, a retrospective approach is 
highly dependent on completed project design 
specifications. This approach prevents the flexibility 
needed to make environmental improvements once the 
design is finalized. Moreover, while LCA reports on the 
same product should be comparable and provide precise 
environmental impact data, the exceptional detail 
provided by a configuration translates into outstanding 
detailed LCA reports, which differ from standard LCA 
reports. For example, this configuration approach could 
include the consideration of even the smallest details, 
such as the weight of bolts in a multifamily building 
construction. Such detailed LCA assessments can result 
in a misleading comparison between products using the 
same LCA database, where one report is very detailed 
(enabled by the configurator), and others are less 
detailed. 

Therefore, the application of prospective and 
retrospective configurators integrating LCA should not 
be regarded as mutually exclusive. Incorporating both 
approaches into a project could substantially streamline 
efficiency in embracing environmental considerations 
and reporting LCA. Moreover, such dual applications 
could enable more dynamic interaction between the 
early and later design stages, ensuring that the 
environmental assessment is comprehensive and 
iterative.  

Comparing LCA results from an early design stage 
with those derived from detailed data collected later in 
the same project can provide significant insights into 
product design. This comparison could help companies 
identify major environmental impact drivers and offer 
opportunities to reduce environmental assessment 
uncertainties.  

6. Conclusions 
The integration of LCA into configurators presents a 
promising path for enhancing sustainable production 

practices. We explored the use of configurators 
integrating LCA at different stages of the design process 
through two contrasting case studies, a prospective and 
a retrospective LCA approach in the construction 
industry.   

By employing prospective and retrospective LCA 
tools, companies can achieve a more thorough 
understanding of environmental impacts at different 
project stages, leading to more informed decision-
making. This approach not only aids in achieving 
compliance with evolving regulatory standards but also 
aligns with broader corporate sustainability goals. 

Future research should continue to explore the 
development and application of these tools across 
different sectors to fully realize their potential in driving 
sustainable development. 
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Abstract
This problem instance paper addresses the need for an industry wide modelling paradigm and language that allows the
formalisation and representation of building knowledge by domain experts (architects, engineers). Herein, the special nature
of the construction industry (e.g. its openness and semantics) in comparison to other industries and the complexity that arises
from this, is recognised. The research needed covers a computation independent meta-model and accompanying modelling
language and the added value of the knowledge-based configuration paradigm therein. The research outcome might spark
renewed interest in an all-round universal knowledge representation language in the field of building information modelling
(BIM) and even prove valuable for other ‘less complex’ industries.
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Knowledge Modelling, Building Sector, Configuration, Universal Language

1. Introduction
A modelling environment for the design, construction,
operation and end-of-life of buildings, in which it is im-
possible for the end user to make modelling mistakes
because of the integration of personal, company, stan-
dardised and regulatory knowledge, has been envisioned
since at least 1999 [1]. In addition, the introduction of en-
vironmental, social, cost, organisational, etc. objectives
would further automate the modelling process through
optimisation.

While some attempts have been made in the field
of building information modelling, also named BIM,
[2][3][4], the quest for a universal knowledge represen-
tation language has also been met with scepticism [1][5]:
claiming that immediate practical needs should be priori-
tised or even that this is not (yet) feasible. It can even be
argued that the field has adopted a pragmatic approach
by focusing on information (as opposed to knowledge)
[6], its translation from one environment to another [7],
and constraint verification only after modelling [8]. Our
proposed research returns to an idealistic view, but finds
it promising if based on revised conceptual foundations
and the knowledge-based configuration paradigm.

The rest of the paper is as follows. First, in Section 2,
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the ’open’ nature specific to the building industry is pre-
sented. In Section 3, the need to call some basic premises
of previous efforts into question is addressed. Section 4 in-
troduces the knowledge configuration paradigm and out-
lines the work of examining the possible benefits and chal-
lenges of its application for building knowledge. Lastly,
possible further extension of the research is outlined in
Section 5.

2. Building Industry as an ‘Open’
Industry

The need for a universal knowledge representation lan-
guage (or at least a common meta-model) and the re-
search challenges this provides, arise from the fact that
the building industry is possibly the most open industry
[1]:

• Many parties are involved in a project and parties
change with every project.

• Vast numbers of manufacturers and products for
any building part (from traditional to innovative),
on any scale (up to the building itself) are avail-
able on the market.

• Both a product directly and an onsite composition
from products might provide a solution for a re-
quired part (e.g. a wall as prefabricated masonry
or on site masonry).

• Project specifications often don’t prescribe spe-
cific products.

• Product delivery might not include some parts but
only list its requirements (called ‘open systems’
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in this text, as opposed to proprietary, ‘closed’
systems’).

This openness is reenforced at a European level
through regulation (Construction Product Regulation[9],
public procurement[10]) and standardisation (CEN - Eu-
ropean Committee for Standardization). This openness
entails that most knowledge is generic and generally
available in ample building regulations and standards.
Designers, contractors and manufacturers refer to these
documents and generally only complement them with
their specific requirements.

The need for a common language for all the stake-
holders is even more acute because of the challenges fac-
ing the construction industry: climate and environment,
robotics, artificial intelligence, digital twins, etc. and this
while facing a shrinking workforce (both engineers and
workers).

3. Work Part 1: Basic Premises
In light of the unsuccessful attempts to develop a uni-
versal knowledge representation language for the con-
struction sector (see Section 1), it is necessary to first list
these experiments, examine their potential shortcomings
and generate new ideas and approaches. Based on this
work, it will then be possible to define the premises of a
meta-model and its accompanying modelling language.

A preliminary examination already allows some un-
derpinnings of previous efforts to be called into question.

Firstly, are existing attempts sufficiently intuitive? The
sheer volume of available building expertise will necessi-
tate the creation, verification and maintenance of knowl-
edge models as a collaborative endeavour to be done by
domain experts (e.g. architects and engineers) directly
without a need for intermediaries like knowledge engi-
neers.

Secondly, are these efforts ontological sufficiently
sound? Some examples of overlooked building ontology:

• A building concept can play different semantic
roles: it can simultaneous be a conceptual ‘con-
tainer’ of parts, items, variants and positions. For
instance, a window is composed of parts for its
operation: generally, a frame, glazing(s) and hard-
ware. Yet, in a project, the concept might also
represent more than one window, for example, a
generalisation of the 4 physical windows (items)
of the front facade. The concept might also ex-
press the variants allowed in the specification
(e.g. the designer allows freedom in the choice
of hardware to the contractor) or offered by the
product (a window available in different heights).
Lastly, variability can also exist within a single

physical item (called positions in this text): a win-
dow can be open or closed, supports for raised
office floors having an adjustable height or a ven-
tilation unit with different flow rates. Therefore,
at least conceptually, properties must be thought
of as potentially having different domains over
its parts, items, variants and positions.

• Any level of abstraction should be allowed from
the obvious generic concept ’door’, over ’parti-
tion’ (covering window, door, wall, floor, etc. ) up
to a ‘building object’ concept.

• Innovative products exist for any building part
and therefore must be expected: a generic concept
should not be confined to its traditional meaning
but allow almost unlimited heterogeneity.

• The semantics of the aforementioned ‘position’
can be further developed to also hold changes
like the onsite length adjustment of a beam, the
removal, addition or replacement of a part (e.g.
a filter change), or the different installation or
use options of a product. With the addition of
a ‘location‘ and ‘time’ property an item could
be tracked in space and time, with each change
being a new position. Thus covering the complete
life-cycle.

• The semantics of the hierarchical relations be-
tween a concept and its parts and items respec-
tively, should not be confined to their traditional
definitions. A concept is primarily a generali-
sation of its items but this relation can have a
part-like meaning through emergent properties
like cardinality, overall cost, energy loss etc. Like-
wise, a concept might have properties that are a
generalisation of the part properties: for example,
a masonry wall concept enforces the same colour
domain for mortar and bricks.

• The ontology should be polyhierarchical (a single
concept occurs in more than in one place) [11]:
for example, products exist that act as roof boards
and roof insulation or the window grille is simul-
taneously part of the window and the ventilation
system.

• Within the partonomy there is also a need for the
idea of ‘breakdowns’: different ways of breaking
down a concept into parts. These ways can be
disjunct (variants): for example, the choices for
the building structure might be frame-like (e.g.
wood or steel) or mass-like (e.g. prefab concrete
or masonry). Breakdowns can also be conjunct
(within a single variant): a building can be sub-
divided into its structure and total air volume or
into floors (with each floor incorporating part of
the structure and air volume). Each breakdown
(and its parts) can be needed for the representa-
tion of knowledge or user requirements.
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Lastly, what is the universe of discourse of the at-
tempts? In any industry, knowledge is interconnected,
but in the construction industry, due to its open nature,
this is scaled to the entire industry. It might therefore
be impossible to effectively isolate a particular aspect in
a model while striving for its universal use. The work
should therefore outline the contours of what constitutes
as building knowledge.

4. Work Part 2: Applying
Knowledge-based
Configuration

The knowledge-based configuration paradigm defines a
configuration model as a set of variables with their do-
mains and with product and user constraints limiting
the possible combinations of variable values, and a solu-
tion (a configuration) as an assignment of single values
to all variables consistent with the constraints (e.g. a
valid configuration), as in Chapter 6 of [12]. Knowledge-
based configuration is a matured and successful area of
artificial intelligence, used and integrated across many
industries for more than 40 years, as presented in Chapter
1 of [12]. The configuration paradigm will feel intuitive
and familiar for most building professionals: a (product
independent) specification as a solution space; a building
as a configuration; design choices as constraints; con-
figurable products like drywall systems, roof systems,
insulation systems. An intensional, declarative represen-
tation through domains and constraints might therefore
prove to be a good fit for construction knowledge

Another appealing aspect is the possibility of a repre-
sentation that is non-causal, meaning that in a particular
constraint which variables are input and which are out-
put need not be defined. Though the building modelling
process is largely experienced as procedural, directional,
top-down, where decisions thought of as the most im-
pactful, like the overall shape of the building, are taken
first and then gradually more detailed decisions are taken,
it is argued that this must not be imposed by the mod-
elling environment. Light requirements might determine
the number and shape of windows instead of the other
way around [13], or standard sizes of plywood sheets
determine the size of a construction to avoid waste [13].
In light of circularity, products available for reuse might
even become requirements instead of solutions. The up-
coming practice of early involvement of all stakeholders
entails the registering of big and small requirements be-
fore designing is started.

The knowledge-based configuration paradigm might
even make the typical iterative design process obsolete,
creating substantial savings. Though the knowledge-
based configuration paradigm seems promising, some

Product

User

Specifi-

cation

Products

Generic concept

Figure 1: Left: relationship between product and
user solution space in a traditional configuration task.
Right: relationships between generic concept, project
specification and products solutions space in a con-
figuration task for a building project part

challenges to the paradigm can already be identified.
Can configuration cover the needs resulting from the

work of Section 3: the ontology, the domain of discourse
and will it be enough to allow domain experts to take on
the role of knowledge engineers? A task resembling the
work of [14].

Will the configuration paradigm be able to fully absorb
the open character discussed in Section 2?

• The knowledge base will be incomplete. This
because of the amount of standards, products,
etc. , the gradual nature of the design process or
confidentiality (e.g. pricing information). Also,
tacit knowledge is prevalent with construction
parties.

• As it is impossible for any product knowledge
base to contain all building products available on
the market, the user requirements (the project
specification) do no operate ‘within’ or on a sin-
gle product knowledge base, cf. Chapter 6 of [12].
It is rather that both constraints defining multi-
ple products and user requirements operate in
the knowledge base of the generic concept (e.g. a
generic window, door, wall, etc.) and it is the in-
tersection of the specification and products solu-
tion spaces that represents the configurations that
provides a solution and this only for the known
products (see Fig. 1).

• The user should be presented only with valid op-
tions at any one moment in the modelling process.
It is therefore not enough to solve for one valid
solution but continuously for the complete valid
solution space. This is especially necessary in a
multi-user environment, where parties operate
in each other’s solution space.

• Building industry knowledge is distributed. Not
only for product knowledge (different manufac-
turers) but also generic knowledge (building reg-
ulations and standards) is generated by differ-
ent institutions at different geographical levels
(municipality, country, EU level, etc.). Expect-
ing all of them to formalise their knowledge on

31



one location seems unrealistic. The product and
generic knowledge base will be distributed and
maybe also the project requirements base. Consis-
tency, verification and maintenance of distributed
generic knowledge might seem especially chal-
lenging.

• A solution is not always a product variant (a sin-
gle product item). A product item position (a spec-
ification might require a specific height for a sup-
port, yet a support adjustable in height might be
acceptable), a product item part (order the whole
product to use only one of its parts) or product
items combined (concrete from different suppli-
ers for one single structure or products combined
as parts to make up the specified whole) might
prove to be equally valid solutions.

• In open systems, as defined in Section 2, the con-
straints for the not included parts of a (supply
side) product might in effect be a product inde-
pendent (demand side) specification. Making it
necessary to solve the product knowledge base
first.

5. Further Expansion of Research
Once the conceptual foundation and configuration as a
solution established, the research could be extended:

• As touched up in the introduction, a need for
optimisation might arise.

• New solving methodologies: computationally
more efficient surrogate models might proof to
be more practical or the use of generative design
where the solution space is explored in an itera-
tive process through single exemplary solutions.

• Propositions for domain expert and end user in-
terface might result from the work.

• New ways of knowledge acquisition like through
voluntary open collaboration of domain experts
or the use of artificial intelligence (large language
models, natural language processing) to extract
knowledge.
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Abstract
Green Configuration combines product configuration technologies with environmental impact calculations and enables customers
to balance cost drivers and environmental impact drivers (such as CO2 footprint) for their preferred product variants. We analyse
requirements for configurable products that go beyond the state of the art of classical Life Cycle Assessment (LCA), and we list
corresponding challenges for configurators, such as missing environmental impact data, total costs over the product life cycle, confidence
in data accuracy, performance of the calculation, multi-objective optimisation, comparability of the results, and efficient explanations. To
address those challenges, we discuss three architecture variants which go beyond sequentially calling separate tools for configuration and
LCA: loosely coupled (where the configurator communicates via parameters with the LCA tool), tightly coupled (where the configurator
also manages the basic environmental data and lets the LCA tool calculate the impact values for assemblies), and integrated (where the
LCA calculation is implemented as part of the configurator). We find that all architectures rely on complete and reliable input data
(which might be synthesised offline by data-driven AI methods) and have different advantages and disadvantages concerning efforts for
tool vendors, product modellers, and customers.

Keywords
product configuration, sustainability, green configuration

1. Introduction
With the European Green Deal [1, 2], the European Union
drives the EU society to a more sustainable future. The EU
Agenda 2050 defines environmental, economic, and social
goals to be achieved by production systems [3]. Requests
for Proposal (RFPs) and other B2B offers of all manufactur-
ing companies will soon require proof of highly sustainable
production and operations – due to higher awareness of
customers and national authorities, and stricter laws such
as the forthcoming Ecodesign for Sustainable Products Reg-
ulation (ESPR) [4] or Sustainable Products Initiative (SPI) of
the EU.

To persist, companies need to document the Product Car-
bon Footprint (PCF) or even Product Environmental Foot-
print (PEF) of all their products transparently and reliably,
according to valid or forthcoming regulations like the Digital
Product Passport (DPP) [5]. For mass production, processes
to assess the environmental impact have already been de-
fined and standardised, e.g., Life Cycle Assessment (LCA) is
standardised by ISO 14040 [6].

Product configuration [7] and Industry 4.0 architectures
[8] go beyond mass production, and mass customisation
allows to manufacture individualised (i.e., lot-size 1) prod-
ucts. The transition towards a circular economy, as required
by ESPR, puts challenges to mass customisation and con-
figuration systems, such as the promotion of circularity-
based business models, integration of eco-design princi-
ples to serve sustainable business demands (i.e., green pro-
curement), and documentation and understanding of the
product’s material characteristics, manufacturing processes,
energy usage, and environmental impacts over the com-
plete life cycle. Only by integrating pre-manufacturing data
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with data from usage and end-of-life phases can genuine
circularity and optimised sustainability (e.g., maximising
the product’s utility while minimising waste) be reached for
configurable products.

The term “Green Configuration” was established a few
years ago1 for this enhancement of configuration tools with
environmental impact calculations. This gives the user com-
prehensive information about the specific effects of their
decisions. Small changes in configuration can have a sig-
nificant impact on the ecological footprint. Multi-objective
optimisation strategies make it possible to optimise the prod-
uct configuration according to desired dimensions (financial
and sustainable) depending on specific requirements. Fur-
thermore, provisions must be made so that the final product
remains in accordance with the increasingly complex legal
framework. This affects not only sales configurators (where
customers shall see the expected environmental impact and
corresponding costs at the point-of-sale, i.e., before they
order a product) but is also vital for engineering configura-
tors (which need to prove that the finally manufactured and
deployed product keeps the promises of the sales phase to
avoid penalties or non-compliance costs).

Wiezorek and Christensen [11] have given a good
overview of the topic, and we will extend their work based
on the current developments, e.g., by considering various
types of environmental impact (not only CO2 equivalents)
and by integrating the total cost of ownership (TCO) over
the complete life cycle (not only the production phase). Our
goal is to find alternative architectures for combining config-
uration and environmental impact calculation and evaluate
them w.r.t. user requirements and challenges of their appli-
cation in practice.

In the next section, we will analyse the state of the art of
environmental data and impact calculation. In section 3, we
discuss which challenges arise when this is to be applied
to configurable products. In section 4, we present the main
architectures for green configuration and describe how they
deal with those challenges. Finally, we conclude what this
can mean for configurator vendors.

1The term “Green Configuration” has been used more by CPQ solution
providers than in academia, e.g., by encoway [9] and CAS [10].
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2. Environmental impact assessment:
The state of the art

Life Cycle Assessment according to ISO 14040 [6] has been
the means of choice for environmental impact assessment
for products, processes, and solutions for decades. More
and more LCA tools and databases are available, and LCA
results are used for Environmental Product Declarations
(EPDs) according to ISO 14025 [12]. Examples for commer-
cial providers are SimaPro2, iPoint3, and sphera4. Ecoin-
vent5 is an extensive database used by providers such as
SimaPro. Some tools and databases target single environ-
mental indicators only – e.g., SiGREEN [13]. ESTAINIUM6

is an open network to exchange PCF-related data in a non-
profit-oriented way.

The LCAs are based on the product’s Bill of Materials
(BOM) and Bill of Processes (BOP) along its life cycle. Most
LCAs are done after the final product design when the ma-
terials and processes are identified. LCA can also be applied
earlier in the design process of configurators to improve
design decisions before finalisation.

In customer communication, EPDs are often used to show
the results of the LCA. However, the EPDs are based on a
specific, fully specified product or – less individually and less
precisely – on a representative product, an average (fictive)
product, or the worst-case product of a homogenous product
family. Thus, they cannot help customers decide on product
details or with customer-specific optimisation. In the best
case, they can give a rough orientation based on existing
LCAs for product representatives or typicals.

As EPDs are used for customer communication, Prod-
uct Category Rules (PCR) and Product Specific Rules (PSR)
are defined to provide comparable results [12]. PCRs and
PSRs harmonise the system boundaries and provide default
parameters for EPDs. However, the usage scenario to be
applied in EPD refers to a fictive reference service time.
This reference service defines the years of service, load, and
operating hours for calculation purposes only. It does not
consider the customer-specific usage conditions. Although
PCR and PSR aim to provide comparable EPD results within
a product category, customers still have to make an effort
to relate these results to the individual life cycle conditions
and make the right purchase decisions.

Besides the insufficient consideration of the customer-
specific usage scenario, the broad range of existing back-
ground data sets makes it hard to figure out the product-
specific environmental performance, as this is influenced
by applied LCA data sets as well. The LCA data sets of-
ten provide a market average or a representative example
process and do not reflect a specific supplier’s product and
production-specific environmental impacts. There is still a
gap in using primary data along the supplier chain.

Recent initiatives7 target the PCF accounting and man-
agement to improve the primary PCF data share in product
accounting and to provide trusted and reliable data along
the supply chain. However, even for PCF, several standards
and guidelines are in place [14, 15] – and sufficient methods
are not yet available to make the data comparable. Large-
scale products may require data on millions of materials and

2https://simapro.com/
3https://www.ipoint-systems.com/
4https://sphera.com/
5https://ecoinvent.org/
6https://www.estainium.eco
7Initiatives such as the aforementioned SiGREEN and ESTAINIUM.

components from thousands of suppliers across multiple
industrial sectors, which poses considerable challenges to
data management and performance.

As PCRs and PSRs try to harmonise the environmental
impact assessment within one product category, large-scale
systems such as rolling stock, production lines, or process
technology are composed of products or assemblies with
multiple PCRs and PSRs to be applied, which are not nec-
essarily comparable. Inline environmental assessments are
required independently of PCRs and PSRs, especially in
large-scale system configuration or turnkey projects. Fo-
cusing on customer-specific usage conditions will provide
tailored results. However, small changes in the conditions
may significantly impact the product’s LCA results.

There is little related work concerning combining LCAs
with a dynamic modelling approach to consider customer-
specific usage or to adapt the background database to future
scenarios (cf. Udriot et al. [16] for one example). Such a
scenario analyser often applies the same product configu-
ration to multiple usage scenarios. Changes in the product
configuration could be made iteratively and sequentially.

Other research reports about work on guidance to inte-
grate LCAs in general and EPDs in particular into config-
urators and its evaluation in the construction sector [17].
Wiezorek and Christensen [11] suggest an architecture for
integrating LCA into a configurator based on a profound
analysis of sustainability assessments according to the Eco-
logical Scarcity Method (ESM) and data from the ecoinvent
database – focusing on the supply chain and manufacturing
phase and mapping all impact to PCF values. A qualita-
tive study [18] lists several advantages that sustainability-
focused configurators can potentially provide.

3. Challenges of impact assessment
for configurable products

Manufacturing companies need to document not only the
PCF but also the PEF (i.e. more environmentally critical sub-
stances than just CO2) of all their products transparently
and reliably, according to valid or forthcoming regulations
like DPP. This must be based on information from suppliers
and knowledge about production processes and operations
(i.e., usage and end-of-life phases) and includes the selection
of suppliers and processes which minimise the overall envi-
ronmental impact. In addition, economic key performance
indicators (KPIs), such as costs for production, transport,
usage, disposal, etc. need to be considered and require multi-
objective optimisation with good user guidance (including
understandable explanations).

The configuration of such an environmentally conscious
system is difficult, especially for complex products, because:

• Many suppliers are involved, among them many
small and medium-sized enterprises (SMEs), which
often cannot provide sufficiently good documenta-
tion on materials and PEF (e.g., several thousand
suppliers for parts of metro trains).

• Parts have entirely different properties as they come
from different industries such as electrical, engineer-
ing, or building technology and may interpret envi-
ronmental KPIs differently.

• Different countries have a wide variety of regula-
tions and certificates (which may even change over
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time), so different solutions (i.e., combinations of
components) are necessary.

• The environmental impact (e.g., concrete PEF values)
depends on the production technologies and loca-
tions of the suppliers and the location of deployment
and conditions at customer sites.

• Sustainability data for many components is missing
or questionable, and improvement is difficult as it is
out of the control of the system integrator.

• The system configuration is often not yet defined in
sufficient detail at the offering time, and therefore,
the environmental impacts can only be estimated
but not precisely calculated.

• Adaptations during contract negotiations or after de-
ployment can affect compliance and/or performance
and require efficient re-calculation and updating of
documentation.

To handle those requirements, we need algorithms and
techniques for:

• Calculation of all relevant sustainability metrics at
point-of-sale: This is not possible in advance (as cur-
rently done) because it depends on user decisions,
which can lead to billions of potential variants. It
must be fast enough to ensure a good user experi-
ence and, therefore, requires high performance.

• Reliable aggregation of the values of all sub-parts:
This includes highly accurate approximations for
missing values specific to the current customer se-
lections. For the usage phase, this cannot be based
on sub-parts alone (as is currently done) but on the
functionality of the whole product or sub-systems.

• Guided optimisation of several objectives: It is not
sufficient to calculate only one (combined, weighted)
optimum (as in current tools). The user must be sup-
ported in evaluating the Pareto front efficiently and
finding the best compromise for conflicting goals.

• Concise visualisation of the results: This helps the
user to easily understand the impacts of their de-
cisions. It shall explain the system’s confidence in
its calculations and where to change a decision to
achieve a better result (which goes beyond the capa-
bilities of current systems).

In the remainder of the text, we will focus on the following
concrete challenges of Green Configuration:

1. Missing environmental data from suppliers: Many,
especially smaller companies, do not yet disclose
environmental data for their products (partly be-
cause they do not know them themselves). This not
only concerns the supply chain, i.e., the impact of
the production of those sub-parts, but also their us-
age and end-of-life processing. To ensure proper
LCA calculation, missing data must be synthesised
as accurately as possible, i.e., by specific approx-
imations based on machine learning from similar
suppliers and/or components, simulation of produc-
tion and/or operation, using intelligent extrapola-
tion which takes trends into account (e.g., new ver-
sions of components typically get better).

2. Unclear impact data for the usage phase: The envi-
ronmental impact is customer- and even application-
specific. It depends on the context, such as operating
hours (e.g., whether an engine runs 8 or 24 hours

a day) and energy mix (e.g., how much fossil, how
much wind power or photovoltaic) [19].

3. Complexity of PEF calculation: The calculation of
the complete product’s environmental impact (e.g.,
CO2 emissions) is more complicated than just adding
the corresponding values of all the parts [20]. LCA
tools such as Green Digital Twin™ (GDT) [21] or
SimaPro implement such details and are certified to
comply with the standards.

4. Confidence in calculated data: As the input data
come with a certain uncertainty, we must hand over
that uncertainty to the intermediate and total val-
ues (e.g., with a confidence level or a value range).
Plausibility checks (e.g., assembly cannot have less
impact than the sum of parts) would be helpful.

5. Multi-objective optimisation: For the customer, it is
helpful to know about the impact distribution over
the phases (supply chain, production, deployment,
usage, end-of-life) and separately for different im-
pact types (energy consumption, pollution, etc.). The
corresponding costs (especially TCO) over different
expected lifetime periods (e.g., 10 years vs. 20 years)
are vital for good decisions. This means the values
for all those metrics must be tracked individually.

6. Effective explanations and user guidance: It is insuf-
ficient to simply show the user the resulting LCA
and TCO values. The user must also understand the
causes for those values, i.e., which of their decisions
contributed most. Transparency must be established
to support users in understanding the impact of a
specific configuration on economic and PEF KPIs.

7. Comparability of data: Data often depends on as-
sumptions (such as those mentioned in challenge 2),
and players may use different assumptions. To make
offers from different vendors comparable, those as-
sumptions and the algorithms used must be dis-
closed or harmonised, e.g., according to standards
such as ISO 14040 [6].

4. Comparison of architectures for
green configuration

This section presents architectures with increasing degrees
of integration, starting with simply using an existing con-
figurator and feeding its results into an existing or newly
customised LCA calculator. In subsections, we will discuss
how each deals with the challenges from the previous sec-
tion and summarise the whole section in a table at the end.

4.1. Status quo: Separate tools
A naïve approach to Green Configuration is sequential –
based upon the availability of two separate tools: config-
urator and LCA calculator. For the configurator (i.e., the
left lane in Figure 1), a modeller defines the product model
(i.e., variety and dependencies) in a knowledge base (KB)
by using the integrated development environment (IDE) for
the configurator. A customer or salesperson uses the con-
figurator user interface (UI) to set values to configuration
parameters to fulfil their requirements. Continuously, the
solver checks compliance with the KB and sets other param-
eters accordingly. Only when the configuration is finished,
the solver hands over the resulting BOM to the LCA tool
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Figure 1: Sequential architecture

(right lane). A (typically other) modeller now collects all
necessary LCA data for the materials for all relevant phases
(supply chain, production, usage, end-of-life) and calculates
the environmental impact values for the product.

We will not go into more detail because this approach does
not really combine the two tools and is impractical due to
the typically long duration of the manual LCA assessment.

4.2. Loosely coupled architecture
To achieve faster results for the user, one can automate the
process. Such a loosely coupled approach was taken by, e.g.,
Tacton [22]. It is based upon modelling the environmental
impact in an LCA tool (such as SimaPro) and synchronising
it with the configurator by mapping configuration features
with parameters for the LCA (as sketched by the dashed
line between KB and LCA data in Figure 2). After each user
action in the configurator UI, the LCA calculator is called
and returns the adjusted sustainability values to be shown
in the configurator UI. The final LCA values may be used
for optimisation, i.e., minimisation of environmental impact,
in the configurator (indicated by the dashed arrow from the
LCA values to the solver).

The main challenge for the configurator vendor is to de-
fine a clean generic mapping between configuration and
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LCA concepts and continuously maintain this interface to
comply with the evolving versions of both the configurator
and the LCA tool and API. Modellers need much expertise
and additional effort because they must specify the LCA
model separately from the configurator model and make
sure that both are in sync (i.e., define the core structure and
the dynamic parameters, include all relevant materials and
components, map those included components to configu-
ration features, i.e., parameters). They may even need to
involve a tool specialist, at least for the first setup of the
system. The configurator users benefit from the proven
LCA processes and the typically up-to-date data in the cor-
responding databases (e.g., ecoinvent). On the other hand,
user experience may still be weak because of possibly long
response times in interactive use (due to the overhead of
calling an external tool and – especially for the first calls –
the comparably long time to calculate the resulting value).
Optimisation is challenging as the configurator cannot eas-
ily access intermediate values for sub-assemblies, thereby
steering optimisation in the right direction. This loosely
coupled architecture covers the challenges from section 3
in the following way:

1. Missing environmental data from suppliers: Avail-
able LCA data for the sub-parts (from suppliers),
for the manufacturing tasks (in the own production
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process), for various time periods in the operations
phase (depending on details of usage and surround-
ings), and for end-of-life (e.g., recycling efforts) can
be reviewed and – if necessary – extended by the
modeller in the LCA tool’s UI before the configu-
ration process starts. Additionally, an external tool
based on machine learning could help to synthesise
data offline (this needs to be implemented by other
experts).

2. Unclear impact data for usage phase: Information
about expected usage can be collected as configura-
tion data and handed over as parameters to the LCA
calculator to achieve customer-specific values.

3. Complexity of PEF calculation: The LCA calculator
can be trusted to comply with the rules for proper
calculation (PCR, PSR).

4. Confidence in calculated data: Current LCA tools do
not (yet) sufficiently inform about (missing) accuracy
of values.

5. Multi-objective optimisation: LCA values of sub-
parts and sub-assemblies are not available to the
optimiser, which can lead to weak (sub-optimal) per-
formance.

6. Effective explanations and user guidance: The con-
figurator UI cannot access the internals of LCA cal-
culation and thus cannot assist the user with expla-
nations and recommendations.

7. Comparability of data: The LCA tool is typically
certified. Therefore, the resulting LCA values are
comparable to other calculations based on the same
standards.

4.3. Tightly coupled architecture
Some LCA tools, e.g., Green Digital Twin™ (GDT) from
Siemens, are generic and expect that the LCA data for the
LCA calculation is handed over at the call. This can be
used for a tightly coupled architecture, where the configu-
rator manages the LCA data and just calls the LCA tool (see
Figure 3).

Again, the advantage for the customer is that they are
facing just one UI (for configuration and LCA values). But
now, the same is true for the modeller (a single UI for config-
uration and LCA models). This means that the configurator
vendor must supply such a modelling UI, which allows the
binding of configuration variants to their LCA data (typ-
ically extracted from LCA data sets), and a solver which
hands the LCA data for the selected variants over to the
LCA calculator. The LCA calculator can even be called for
parts of the product (not only for the whole product). The
tightly coupled approach covers the challenges from sec-
tion 3 in the following way:

1. Missing environmental data from suppliers: Simi-
larly to the loosely coupled approach, LCA data for
the relevant sub-parts can be prepared or synthe-
sised offline.

2. Unclear impact data for usage phase: The configura-
tor hands those LCA data over to the LCA calculator,
corresponding to the customer’s expected usage.

3. Complexity of PEF calculation: The LCA calculator
can be trusted to comply with the rules for proper
calculation (PCR, PSR).

4. Confidence in calculated data: Current LCA tools do
not (yet) sufficiently inform about (missing) accuracy
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Figure 3: Tightly coupled architecture

of values, but as the solver has access to the LCA
values of sub-assemblies, it can partly validate them.

5. Multi-objective optimisation: The optimiser can
use the LCA values of sub-assemblies for informed
heuristics.

6. Effective explanations and user guidance: The con-
figurator UI cannot access the internals of LCA calcu-
lation but can use the LCA values of sub-assemblies
for some recommendations.

7. Comparability of data: Similar to the loosely coupled
approach, the LCA values are comparable to other
calculations based on the same standards.

4.4. Integrated architecture
One can go one step further and directly integrate LCA cal-
culation into the configurator by extending the modelling
environment (IDE) with a component for LCA and calcu-
lating sustainability values directly in the configurator (see
Figure 4). Such an approach was taken by, e.g., CAS Merlin
[11, 23].

The integrated approach has the advantage that it does
not need an explicit mapping to an LCA tool during mod-
elling and can use environmental data during reasoning
and optimisation to come up with a more preferred solu-
tion. On the other hand, it needs considerable effort for the
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Figure 4: Integrated architecture

configurator vendor to implement the calculation, care for
certification (for LCA calculation according to ISO 14040,
for EPD generation according to ISO 14025), and continu-
ously maintain it to keep compliance with standards up to
date. Development efforts can be reduced if certification
is unnecessary, e.g., because customers need not compare
their products with competitors but only with their internal
variants. The integrated approach covers the challenges
from section 3 in the following way:

1. Missing environmental data from suppliers: Simi-
larly to the coupled approaches, LCA data for the
relevant sub-parts can be prepared or synthesised
offline.

2. Unclear impact data for usage phase: The combined
solver and calculator can directly access the expected
usage information as specified by the customer to
compute the LCA values.

3. Complexity of PEF calculation: Simple impact calcu-
lations (e.g., the addition of upstream) can be easily
integrated into the solver. Covering the same func-
tionality as an LCA tool and achieving certification
requires much more effort by the configurator ven-
dor.

4. Confidence in calculated data: The combined solver
and calculator can keep track of the accuracy of the

calculated LCA values for assemblies if the accuracy
of the input data is known or can be estimated.

5. Multi-objective optimisation: As the optimiser and
LCA calculator are fully integrated, intermediate
LCA values can efficiently control optimisation.

6. Effective explanations and user guidance: The com-
plete integration of the solver and LCA calculator
and full access to all their intermediate data allows
for detailed explanations and recommendations.

7. Comparability of data: The extension of the solver
with LCA calculation leads to highly individualised
LCA values. If the configurator vendor does not
achieve certification (e.g., due to high costs and/or
efforts), the LCA values may not be comparable to
commercial LCA tools.

4.5. Summary
Summing up, all three approaches have strengths and weak-
nesses when dealing with the challenges. Challenge 1 (miss-
ing data) is not discriminating, and the best way to cover
it is by extending and/or improving input data offline, e.g.
with the help of data-driven AI. Therefore, we rate only
challenges 2 to 7 in Table 1 and use a three-valued scale –
the approach has strengths, is neutral, or has weaknesses –
to condense the arguments from the preceding subsections.

Table 1
Concerning the challenges, the architectures have strengths (+),
are neutral (o), or have weaknesses (-)

Challenge
Loosely
coupled

Tightly
coupled

Integrated

2 - usage phase o + +
3 - calculation + + o
4 - confidence - o +
5 - optimisation - o +
6 - explanations - o +
7 - comparability + + o

The integrated approach offers more value to the cus-
tomers, e.g. more optimisation possibilities and better ex-
planations. On the other hand, this requires more effort for
the configurator developer because they must implement
LCA calculations (not just call existing tools or libraries) and
care for the necessary certification to make the calculations
transparent and comparable.

The coupled approaches take advantage of re-using off-
the-shelf LCA calculators and can even hand over configura-
tion information as parameters, but neither (especially the
loosely coupled architecture) can easily integrate the calcu-
lation results into their reasoning (e.g. for optimisation and
explanations). The tightly coupled architecture can access
values from sub-assemblies to achieve better usability.

A product modeller may prefer the tightly coupled ap-
proach and especially the integrated approach because data
management can be done with only one tool: the configura-
tor.

5. Conclusions
Green Configuration, the combination of product configura-
tion technologies with environmental impact calculations,
is a vital approach to address sustainability challenges. We
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have analysed requirements and challenges and discussed
several architectures for configurators implementing a green
configuration approach.

We have seen that the different architectures have dif-
ferent strengths and weaknesses, advantages and disadvan-
tages. All of them are feasible and require different efforts
from stakeholders, i.e., tool vendors, product modellers, and
customers. From the viewpoint of a product owner, the se-
lection of their individually preferred architecture depends
on the product‘s complexity, the level of product customisa-
tion, the number of offers per year, the LCA impact of the
usage phase, and the need to enhance customer experience
and operational efficiency.

There is much room for future research on efficiently
merging sustainability management with configuration life-
cycle management, e.g., reference architectures, reliable data
exchange, individualised impact calculation, multi-objective
optimisation, elaborate standards, etc.

As one of the most important, we see the monetary as-
sessment of PEF as a means of providing an estimate of
the TCO. Visualising the monetary impact of configuration
decisions over the whole lifecycle of the product will create
a real incentive for the customer to choose the more sustain-
able product configuration (e.g., less energy costs during
the operation phase). Green Configuration extended with
TCO minimisation can lead to a triple-win situation: min-
imised total cost of ownership for the customer, increased
demand for high-quality products for the industry, and less
environmental damage.

Green Configuration enables the creation and scale of
application-specific EPDs and DPPs based on more precise
information and assumptions on the concrete product prop-
erties and usage. To make such specifically customised
values comparable between tools, existing standards like
ISO 14040 and the ISO 14020 series [24] need to be adapted
or extended. Transparency of the individual impact values
per phase and/or criterion is necessary for well-founded
decisions.

Disclaimer: Much of the presented work is “thought
work”. Currently, we are working on prototypes to con-
firm the ideas and results in practice.
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Abstract
The Job Shop Scheduling Problem (JSP) is central to operations research, primarily optimizing energy efficiency due to its profound
environmental and economic implications. Efficient scheduling enhances production metrics and mitigates energy consumption, thus
effectively balancing productivity and sustainability objectives. Given the intricate and diverse nature of JSP instances, along with
the array of algorithms developed to tackle these challenges, an intelligent algorithm selection tool becomes paramount. This paper
introduces a framework designed to identify key problem features that characterize its complexity and guide the selection of suitable
algorithms. Leveraging machine learning techniques, particularly XGBoost, the framework recommends optimal solvers such as GUROBI,
CPLEX, and GECODE for efficient JSP scheduling. GUROBI excels with smaller instances, while GECODE demonstrates robust scalability
for complex scenarios. The proposed algorithm selector achieves an accuracy of 84.51% in recommending the best algorithm for solving
new JSP instances, highlighting its efficacy in algorithm selection. By refining feature extraction methodologies, the framework aims to
broaden its applicability across diverse JSP scenarios, thereby advancing efficiency and sustainability in manufacturing logistics.

Keywords
Job Shop Scheduling Problem, Energy Efficiency, Algorithm Selection, Machine Learning, Feature Extraction

1. Introduction
The Job Shop Scheduling Problem (JSP) is a cornerstone
issue in operations research and optimization, serving as a
critical benchmark for assessing the performance of various
algorithms. JSP entails the complex task of scheduling jobs
on machines in a manufacturing environment to optimize
several performance metrics, such as makespan, flow time,
tardiness, resource utilization, and energy consumption [1].
Effective benchmarking of JSP solutions requires a multi-
faceted evaluation of these metrics, particularly focusing
on makespan, energy consumption, and tardiness to gauge
scheduling efficiency and resource utilization [2]. Tools like
JSPLIB play a vital role in these benchmarking efforts by
providing researchers with diverse instances derived from
significant studies and experiments, thereby enhancing the
evaluation of algorithms [3].

Understanding the characteristics of problem instances
is essential for effective benchmarking in JSP. Critical fac-
tors include the number of jobs and machines, variability
in processing times, machine availability, and precedence
relationships, all of which significantly impact algorithm
performance [4]. Additionally, considering energy consump-
tion, which varies based on machine speed and operational
factors, adds another layer of complexity [5]. Achieving a
balance between energy consumption and scheduling de-
cisions is crucial for attaining energy efficiency without
compromising production goals [6].

JSP’s focus on energy efficiency has intensified in recent
years due to its substantial environmental and economic im-
pacts [7]. Researchers have investigated strategies such as
employing speed-adjustable machines and vehicles to mini-
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mize energy consumption while maintaining productivity
[8]. Advanced algorithms and optimization techniques have
been developed to address these energy-related challenges,
taking into account factors like machine speed, idle time,
and energy requirements [9]. Real-world implementations
of these strategies have demonstrated tangible benefits, in-
cluding cost savings and positive environmental effects [10].

In addition to traditional optimization methods, machine
learning techniques are increasingly being utilized to rec-
ommend algorithms for solving problems within the JSP
family. For instance, Müller et al. designed a system capable
of selecting the most suitable solver for addressing Flex-
ible JSP by leveraging machine learning approaches [11].
Similarly, Strassl and Musliu [12] analyzed JSP instances
without energy consumption from the literature to extract
features that inform algorithm performance, resulting in a
homogeneous set of instances with consistent characteris-
tics. These features were then used to train various models,
with Random Forest achieving the highest accuracy at 90%
[12].

In conclusion, the integration of machine learning tech-
niques into JSP research provides new avenues for improv-
ing algorithm selection and performance, particularly in
handling complex and varied instances. This integration en-
hances the efficiency and effectiveness of job shop schedul-
ing by combining the strengths of traditional optimization
approaches with innovative machine learning methods. The
ongoing advancements in this field are driving both aca-
demic research and practical applications toward more sus-
tainable and innovative solutions.

2. Problem Description and Model
Formulation

The JSP tackled in this study emphasizes its intricate energy
considerations. The JSP poses a significant computational
challenge, being NP-complete due to its difficulty finding
optimal solutions within reasonable time frames.

The core challenge of the JSP involves optimizing task
allocation across multiple jobs and machines while minimiz-
ing key criteria, notably the total job completion time. How-
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ever, achieving this optimization is complex due to various
real-world constraints and dependencies, contributing to
the JSP’s NP-completeness. The combinatorial explosion of
possible job and machine combinations further complicates
the problem, making exhaustive exploration impractical as
the number of jobs and machines grows.

2.1. Mixed Integer Programming
The JSP involves various sets, parameters, variables, and
constraints crucial for formulation and solution:

Sets:

• 𝐽 = {1, . . . , 𝑛}, the set of jobs.
• 𝑀 = {1, . . . ,𝑚}, the set of machines.
• 𝑆 = {1, . . . , 𝑠}, the set of speeds.
• 𝑇𝑗 , ∀𝑗 ∈ 𝐽 , the set of tasks in job 𝑗. In standard JSP
𝑇𝑗 = 𝑀 .

Parameters:

• 𝐷𝑗𝑡, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇𝑗 , the due date of task job 𝑡𝑗𝑡.
• 𝑅𝑗𝑡, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇𝑗 , the release date of task job
𝑡𝑗𝑡.

• 𝑃𝑗𝑡𝑠, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇𝑗 , the processing time of task
job 𝑡𝑗𝑡 on machine 𝑡 with speed 𝑠.

• 𝐸𝑗𝑡𝑠, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇𝑗 , the energy consumption for
processing task job 𝑡𝑗𝑡 with speed 𝑠.

Variables:

• 𝑐𝑗𝑡, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇𝑗 , the completion time of task
job 𝑡𝑗𝑡

• 𝑡𝑡𝑗𝑡, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇𝑗 , tardiness of task job 𝑡𝑗𝑡 with
respect to its due date

• 𝑥𝑚𝑗𝑡𝑠 ∈ {0, 1}, ∀𝑚 ∈ 𝑀 , ∀𝑗 ∈ 𝐽 , 𝑡 ∈ 𝑇𝑗 , binary
sequencing variables (i.e., 𝑥𝑚𝑗𝑡𝑠 = 1 denotes that
task 𝑡 of job 𝑗 is performed with speed 𝑠 on machine
𝑚)

• 𝑦𝑚𝑖𝑗𝑝𝑞 ∈ {0, 1}, ∀𝑚 ∈ 𝑀 , ∀𝑖, 𝑗 ∈ 𝐽 , ∀𝑝, 𝑞 ∈
𝑇𝑖, 𝑇𝑗 , 𝑖 ̸= 𝑗, binary assignment variables (i.e.,
𝑦𝑖𝑗𝑝𝑞 = 1 denotes that task 𝑝 of job 𝑖 precedes task
𝑞 of job 𝑗 on machine 𝑚)

𝜑* = argmin
𝜑 ∈ Φ

[𝑀𝐾(𝜑), 𝐸𝐶(𝜑), 𝑇𝑇 (𝜑)] (1)

subject to:

∑︁

𝑚∈𝑀

𝑥𝑚𝑗𝑡𝑠 = 1 (2)

∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇𝑗 ∀𝑠 ∈ 𝑆

∑︁

𝑚∈𝑀

𝑦𝑚𝑖𝑗𝑝𝑞 = 1 (3)

∀𝑖, 𝑗 ∈ 𝐽, ∀𝑝, 𝑞 ∈ 𝑇𝑖, 𝑇𝑗 ,

𝑖 ̸= 𝑗, 𝑝 ≤ 𝑞

𝑡𝑡𝑚𝑗𝑡 ≥ 𝑐𝑚𝑗𝑡 −𝐷𝑗𝑡 (4)

∀𝑚 ∈𝑀,∀𝑗 ∈ 𝐽,

∀𝑡 ∈ 𝑇𝑗 , 𝑥𝑚𝑗𝑡 = 1

𝑐𝑚𝑗𝑡 ≥ 𝑅𝑗𝑡 + 𝑃𝑚𝑗𝑡𝑠 (5)

∀𝑚 ∈𝑀, ∀𝑗 ∈ 𝐽,

∀𝑡 ∈ 𝑇𝑗 , ∀𝑠 ∈ 𝑆, 𝑥𝑚𝑗𝑡𝑠 = 1

𝑐𝑚𝑗𝑠 ≥ 𝑐𝑚𝑖𝑝 + 𝑃𝑚𝑖𝑝𝑠 (6)

∀𝑚 ∈𝑀, ∀𝑖, 𝑗 ∈ 𝐽,

∀𝑝, 𝑞 ∈ 𝑇𝑖, 𝑇𝑗 , ∀𝑠 ∈ 𝑆,

𝑖 ̸= 𝑗 ∧ 𝑝 < 𝑞 ∧ 𝑦𝑚𝑖𝑗𝑝𝑠 = 1

𝑐𝑚𝑗𝑡 ≥ 0 , 𝑡𝑚𝑗𝑡 ≥ 0 (7)

∀𝑚 ∈𝑀,∀𝑗 ∈ 𝐽∀𝑡 ∈ 𝑇𝑗

This model seeks the optimal solution 𝜑* that minimizes
the three measures mentioned in equation 1. considering
the constraints associated: the maximum makespan of all
task jobs 𝑀𝐾(𝜑), the total energy consumption 𝐸𝐶(𝜑),
and the total tardiness 𝑇𝑇 (𝜑). The simultaneous optimiza-
tion of these objectives requires a delicate balance between
the various considerations and constraints of the problem.
Therefore, two approaches to optimizing the problem so-
lutions are proposed, allowing us to analyze the methods’
behavior better.

2.2. Mono-objective optimization
This section presents the mono-objective optimization for
a specific scheduling problem involving multiple jobs and
machines, emphasizing key performance metrics such as
makespan, energy consumption, and total tardiness.

𝑓𝑚 = max
𝑗∈𝐽

𝑚∈𝑀

(𝑐𝑗𝑚) (8)

𝑓𝑒 =
∑︁

𝑗∈𝐽

∑︁

𝑡∈𝑇𝑗

𝐸𝑗𝑡 (9)

𝑓 𝑡𝑡 =
∑︁

𝑚∈𝑀

∑︁

𝑗∈𝐽

∑︁

𝑡∈𝑇𝑗

𝑡𝑡𝑚𝑗𝑡 (10)

Equation 8 represents the makespan, which is the maxi-
mum completion time among all machines, by calculating
the total processing time of all job tasks on each machine
and selecting the maximum value across all machines. Equa-
tion 9 describes energy consumption by computing the total
energy consumed by all job tasks across all machines. Lastly,
Equation 10 is formulated to show the total tardiness, which
represents the number of time units of each job or operation
that are performed outside its time window, i.e., the period
of time between the release date and the due date.

𝑚𝑖𝑛
𝑓𝑚 −𝑚−

1

𝑚+
1 −𝑚−

1

+
𝑓𝑒 −𝑚−

2

𝑚+
2 −𝑚−

2

+
𝑓 𝑡𝑡

𝑚+
1

(11)

Minimizing the objective Function 11 aims to find a so-
lution that achieves a balanced trade-off among the com-
ponents. The values 𝑚+

1,2 and 𝑚−
1,2 are used to normalize

the 𝜑* solution obtained in the three-dimensional objective
space. This allows a correct comparison between the values
of the objective function in minimizing the problem, giving
the same weight to all the parts, and avoiding any of the
variables dominating the search.

𝑚+
1 =

∑︁

𝑗∈𝐽

(
∑︁

𝑚∈𝑀

max
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)) (12)
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𝑚+
2 =

∑︁

𝑚∈𝑀

(
∑︁

𝑗∈𝐽

max
𝑠∈𝑆

(𝐸𝑗𝑚𝑠)) (13)

𝑚−
1 =max

𝑗∈𝐽
(
∑︁

𝑚∈𝑀

min
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)) (14)

𝑚−
2 =

∑︁

𝑚∈𝑀

(
∑︁

𝑗∈𝐽

min
𝑠∈𝑆

(𝐸𝑗𝑚𝑠)) (15)

Equations between 12 and 15 determine both maxi-
mum (𝑚+

1 and 𝑚+
2 ) and minimum (𝑚−

1 and 𝑚−
2 ) values

for makespan and energy consumption respectively. For
makespan, these values signify the maximum and minimum
completion times across all machines, accounting for the
maximum and minimum processing times of job tasks on
each machine. Similarly, in terms of energy consumption,
they represent the maximum and minimum energy utilized
among all machines, considering the maximum and mini-
mum energy consumption of all job tasks on each machine.

3. Algorithm Selector
The selection of algorithms for a given problem 𝐽𝑆𝑃 in-
volves identifying the most appropriate algorithm from a
collection capable of solving 𝐽𝑆𝑃 , taking into account the
specific characteristics of 𝐽𝑆𝑃 . Rubinoff [13] formalized
this process of algorithm selection. Rubinoff defined key
elements, including the problem space 𝑋 , representing all
instances of 𝐽𝑆𝑃 ; the algorithm space 𝐴, encompassing
algorithms capable of solving any 𝑗𝑠𝑝 ∈ 𝑋 ; and a perfor-
mance metric 𝑦, which quantifies algorithm effectiveness
for solving 𝑗𝑠𝑝 ∈ 𝑋 .

The core objective is to establish a function 𝑆 : 𝑋 →
𝐴 that, for each problem instance 𝑗𝑠𝑝 ∈ 𝑋 , selects the
optimal algorithm from 𝐴 based on metric 𝑦. To effectively
characterize each 𝑗𝑠𝑝, a feature set 𝐹 is constructed to
represent 𝑝 and assist in the decision-making process for
𝑆. Consequently, 𝑆 is defined as a composite function 𝑆 =
𝑇 ∘ 𝐺, where 𝐺 : 𝑋 → R|𝐹 | maps 𝑝 to its feature vector
in R|𝐹 |, and 𝑇 : R|𝐹 | → 𝐴 selects the algorithm from 𝐴
based on this feature representation. The choice of 𝐹 is
critical as it must be informative and accurately represent
the characteristics of 𝐽𝑆𝑃 .

Considering the modeling of algorithm selectors in Figure
1, an algorithm selector structure is proposed, where it can
be seen that it is composed of a training phase, in which
the features of a set of instances are processed to generate
a set of data and are solved using three solvers: GECODE,
CPLEX, and GUROBI. Once the instances have been solved,
the extracted features are related to the best algorithm that
has solved that instance, and different machine learning
models are trained in order to validate which is the one
that obtains the best accuracy and thus use it to recommend
future instances.

The following subsections detail each of the training pro-
cesses.

3.1. Feature processing
For each instance, we extract the typical characteristics of a
JSP (Job Shop Scheduling) problem, such as the number of
jobs |𝐽 |, the number of machines |𝑀 |, the type of Release
date, and Due date constraint 𝑅𝑑/𝐷𝑑, and the number of
speeds |𝑆|. Additionally, we extract other features that are
obtained in a less direct manner and aim to be as informa-

tive as possible about the complexity of the instance they
represent. The extra features extracted are:

max(𝑃 ) (16)

mean(𝑃 ) (17)

min(𝑃 ) (18)

The maximum processing time (16) represents the longest
time required to complete any single operation within the
job set. The mean processing time ( Equation 17) gives
the average duration of the operations, providing an over-
all sense of the job length. The minimum processing time
(Equation 18) shows the shortest time needed for any oper-
ation, indicating the fastest job segment.

max(𝐸) (19)

mean(𝐸) (20)

min(𝐸) (21)

The maximum energy consumption (Equation 19) indi-
cates the highest energy required for any single operation.
The mean energy consumption (Equation 20) provides the
average energy used across all operations, reflecting the
overall energy profile. The minimum energy consumption
(Equation 21) shows the lowest energy usage for an opera-
tion, highlighting the least energy-intensive job segment.

∑︁

𝑗∈𝐽

(︃∑︁

𝑚∈𝑀

max
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)

)︃
(22)

Maximum makespan (Equation 22) represents the maxi-
mum makespan of the instance obtained, assuming that all
operations are performed serially with their maximum pro-
cessing time. This value gives the longest possible duration
to complete all jobs, assuming no parallel processing.

max
𝑗∈𝐽

(︃∑︁

𝑚∈𝑀

min
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)

)︃
(23)

Minimum makespan (Equation 23) represents the
makespan of the solution obtained by considering that the
operations can be performed in parallel and do not overlap.
This makespan represents a lower bound of the possible
makespan in a solution, indicating the shortest time to com-
plete all jobs if perfectly parallelized.

∑︁

𝑚∈𝑀

(︃∑︁

𝑗∈𝐽

max
𝑠∈𝑆

(𝐸𝑗𝑚𝑠)

)︃
(24)

∑︁

𝑚∈𝑀

(︃∑︁

𝑗∈𝐽

min
𝑠∈𝑆

(𝐸𝑗𝑚𝑠)

)︃
(25)

The sum of the maximum (Equation 24) and minimum
(Equation 25) energy consumption is obtained by adding
for each operation its maximum and minimum energy con-
sumption, respectively. These values provide insights into
the total energy requirements of the job set under extreme
conditions.

⎧
⎪⎨
⎪⎩

−1 𝑅𝑑/𝐷𝑑 = 0
∑︁

𝑗∈𝐽

(︃∑︁

𝑚∈𝑀

max
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)

)︃
𝑅𝑑/𝐷𝑑 = 1

(26)
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Figure 1: Structure of the proposed recommender system.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 𝑅𝑑/𝐷𝑑 = 0

∑︁

𝑗1,𝑗2∈𝐽
𝑗1 ̸=𝑗2

max(0,min(𝐷𝑑𝑗1 , 𝐷𝑑𝑗2 )−max(𝑅𝑑𝑗1 , 𝑅𝑑𝑗2 ))

𝐷𝑑𝑗1 −𝑅𝑑𝑗1

|𝐽|·(|𝐽|−1)
𝑅𝑑/𝐷𝑑 = 1

∑︁

𝑗1,𝑗2∈𝐽
𝑗1 ̸=𝑗2

∑︁

𝑚∈𝑀

max(0,min(𝐷𝑑𝑗1𝑚, 𝐷𝑑𝑗2𝑚)−max(𝑅𝑑𝑗1𝑚, 𝑅𝑑𝑗2𝑚))

𝐷𝑑𝑗1𝑚 −𝑅𝑑𝑗1𝑚

|𝐽|·(|𝐽|−1)·|𝑀| 𝑅𝑑/𝐷𝑑 = 2

(28)

Maximum Tardiness (Equation 26) represents the max-
imum possible delay in a solution. If there are no release
or due date constraints (𝑅𝑑/𝐷𝑑 = 0), it is set to -1. Other-
wise, it sums the maximum processing times, indicating the
worst-case delay scenario.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 𝑅𝑑/𝐷𝑑 = 0

∑︁

𝑗∈𝐽

𝐷𝑑𝑗 −𝑅𝑑𝑗∑︀
𝑚∈𝑀 𝑃𝑗𝑚

|𝐽| 𝑅𝑑/𝐷𝑑 = 1

∑︁

𝑗∈𝐽

∑︁

𝑚∈𝑀

𝐷𝑑𝑗𝑚 −𝑅𝑑𝑗𝑚
𝑃𝑗𝑚

|𝐽|·|𝑀| 𝑅𝑑/𝐷𝑑 = 2

(27)

Time-Window (Equation 27) represents the number of
times a job or operation can be performed within its time
window. This metric varies based on the type of release and
due date constraints: no constraints, job-level constraints, or
operation-level constraints, indicating flexibility in schedul-
ing.

Overlap (Equation 28) represents the degree of overlap be-
tween the time windows of the jobs or operations. This met-
ric assesses how much the scheduling windows for different

jobs or operations coincide, which impacts the complexity
and difficulty of scheduling.

3.2. Machine Learning Models
Once the instances have been vectorized and solved, a tabu-
lar data set is constructed with the characteristics of each
instance and the solver that has found the best solution,
that is, the one that has obtained the lowest value of the
objective function.

This dataset has been separated into two subsets, a train-
ing subset with a size of 80% and a test subset with the
remaining 20%. In addition, it has been ensured that the
same number in proportion of instances exists in the two
subsets.

The training dataset has been used to validate different
models using five-fold cross-validation. The validated mod-
els are the following:

• Logistic Regression: This is a statistical method for
analyzing a dataset in which one or more indepen-
dent variables determine an outcome. The outcome
is measured with a dichotomous variable (i.e., two
possible outcomes). Logistic regression is particu-
larly useful for binary classification problems and
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provides insights into the relationships between the
variables and the probability of the outcomes.

• Decision Tree: This is a decision support tool that
uses a tree-like model of decisions and their possi-
ble consequences, including chance event outcomes,
resource costs, and utility. A decision tree is built by
splitting the dataset into subsets based on the value
of input features, with the goal of making the most
informative splits. This method is easy to interpret
and visualize, making it useful for understanding
the structure of the data.

• Gaussian Naive Bayes: This is a probabilistic classi-
fier based on Bayes’ theorem, with the assumption
that the features are independent given the class
label and that they follow a Gaussian distribution.
Despite its simplicity, Gaussian Naive Bayes can per-
form well in various situations, especially when the
assumption of independence roughly holds true.

• K-Nearest Neighbors (KNN): This is a non-
parametric method used for classification and re-
gression. For classification, the input consists of
the 𝑘 closest training examples in the feature space,
and the output is a class membership. The object
is assigned to the class most common among its 𝑘
nearest neighbors.

• Random Forest: This is an ensemble learning method
for classification and regression that constructs mul-
tiple decision trees during training and outputs the
mode of the classes (classification) or mean predic-
tion (regression) of the individual trees. Random
forests improve the predictive accuracy and control
over-fitting by averaging multiple trees, reducing
the model’s variance.

• XGBoost [14]: This is an optimized distributed gradi-
ent boosting library designed to be highly efficient,
flexible, and portable. It implements machine learn-
ing algorithms under the gradient boosting frame-
work, which builds models in a stage-wise fashion
and generalizes them by optimizing for a differen-
tiable loss function. XGBoost is known for its speed
and performance, making it a popular choice for
structured/tabular data.

• Multi-Layer Perceptron (MLP): This is a class of feed-
forward artificial neural networks that consist of at
least three layers of nodes: an input layer, a hid-
den layer, and an output layer. Except for the input
nodes, each node (or neuron) uses a nonlinear activa-
tion function. MLPs are capable of learning complex
mappings from inputs to outputs and are trained
using backpropagation.

4. Evaluation
All experiments were conducted on a system equipped with
an Intel 3.60 GHz 12th generation Core i7 CPU and 64 GB
of RAM. The implementation was developed in Python 3.11.
Well-known solvers such as GUROBI [15], CPLEX [16], and
GECODE [17], which are implemented on Minizinc, were
utilized.

To evaluate the quality of the solutions obtained, the
mono-objective function shown in Equation 11 is used to
compare the best solutions from the solvers. Other impor-
tant results, such as the average objective function, solving

time, optimum, satisfaction rate, and the number of un-
solved solutions, are presented above.

4.1. Instances
Instance creation is one of the most important aspects of
evaluation as it allows a specific number of instances to be
configured to ensure the most comprehensive evaluation
possible, taking into account all possible combinations the
problem may encounter in real-life scenarios.

The JSP Benchmark used for testing is composed of the
number of jobs (𝐽 ) and machines (𝑀 ) to determine each
job’s tasks. These variables can take any natural number.
In this test set, the set {5, 10, 20, 25, 50, 100} is considered
for 𝐽 . The release and due date can take values {0, 1, 2},
speed scaling can take values {1, 3, 5}, and statistical distri-
butions considered are {uniform, normal, exponential}. For
each configuration, 10 instances are generated with different
seeds to ensure substantial variation between them. There-
fore, a total of 6(𝐽)×6(𝑀)×3(𝑟𝑑𝑑𝑑)×3(𝑠𝑠)×3(𝑑𝑖𝑠𝑡)×
10(𝑄) = 9720 instances are obtained.

Figure 2: Distribution of timeout and relationship between time
and energy.

The time allocated for resolving each instance depends
on the specific characteristics of the problem. An example
of this allocation is illustrated in Figure 2. In this exam-
ple, an instance with 50 jobs, 10 machines, no Release Date
or Due Date, and a single speed per machine is allocated
149 seconds. The principle is that if the maximum allo-
cation time for an instance is 300,000 milliseconds, each
characteristic’s impact on the allocation should be equiv-
alent. Therefore, each characteristic contributes at most
300, 000/4 = 75, 000 milliseconds. In this manner, for the
given example, if the Release Date and Due Date are as-
signed at the operation level (RDDD = 2), they contribute
75,000 milliseconds. If they are absent (RDDD = 0), they
contribute 50 milliseconds. When assigned at the job level,
the contribution is determined by exponential interpolation
between these two cases.

4.2. Results
Upon defining the problem instances and setting appropriate
search time limits for each solver, the focus shifted toward
analyzing and interpreting the outcomes. This involved
evaluating the efficacy of the solvers employed, assessing
solution quality, and considering the broader implications
within the problem domain.
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Figure 3: Quantity of optimum, satisfied and unresolved in-
stances by each solver.

Figure 3 illustrates the distribution of solved instances
among GUROBI, CPLEX, and GECODE across three cate-
gories: optimal (best solution), satisfied (feasible but not
optimal), and unresolved (not solved).

GUROBI emerged as the top performer overall, solv-
ing the highest number of optimal solutions and consis-
tently demonstrating its ability to find acceptable solutions
even when optimal ones were unfeasible. This underscores
GUROBI’s robust capability in efficiently managing a di-
verse array of problem types. Conversely, GECODE excelled
in finding feasible solutions, significantly outperforming
other solvers in achieving satisfactory solutions. Moreover,
GECODE showed the fewest instances left unresolved, high-
lighting its reliability in tackling complex problems without
abandoning them.

In contrast, CPLEX, while proficient, faced challenges
with more complex problem instances, leading to a higher
incidence of unresolved cases. Although it achieved rea-
sonable numbers of optimal and satisfactory solutions, its
performance consistency was observed to be less reliable
compared to GUROBI and GECODE.

Table 1 compares solution times and objective function
values from GUROBI, CPLEX, and GECODE across differ-
ent job and machine configurations. This analysis reveals
insights into each solver’s performance characteristics, high-
lighting strengths and limitations in solving optimization
problems.

For 5 to 20 jobs, GUROBI consistently shows shorter so-
lution times and competitive objective values compared to
CPLEX and GECODE. Its efficiency and precision make it
highly effective in simpler problem instances.

In medium-sized scenarios (20 to 50 jobs), GUROBI main-
tains an edge, particularly with fewer machines, though
CPLEX occasionally performs better in specific configura-
tions. GUROBI generally achieves superior objective func-
tion values in varied problem setups.

In complex cases (50 to 100 jobs), GECODE demonstrates
exceptional scalability despite encountering timeouts in
some instances. GUROBI and CPLEX struggle more often
with timeouts as problem size and complexity increase, yet
GUROBI often maintains competitive objective values.

These insights underscore the importance of selecting
solvers based on problem specifics. GUROBI excels in
smaller to medium-sized instances, balancing efficiency
and high-quality solutions. CPLEX performs well in cer-

tain medium-sized setups but faces scalability challenges.
GECODE shines in complex problems, offering robust scal-
ability and reliability despite occasional computational hur-
dles. These findings aid practitioners in optimizing solver
choices and considering trade-offs between solution quality,
efficiency, and problem complexity.

4.3. Complexity analysis
Observing the results obtained by the methods used, a rela-
tionship is observed between the parameters employed and
the complexity of the instances. This part of the study fo-
cuses on the in-depth analysis of each parameter to observe
its contribution to the overall complexity of the instances.

(a) by number of machines

(b) by number of jobs

Figure 4: Number of instances solved

To delve deeper into the data presented in Table 1, Fig-
ure 4 provides a general overview of the number of solved
instances. Organizing the data by the number of machines,
as shown in subfigure 4a, it is evident that as the number of
machines increases, the number of solved instances progres-
sively decreases except for the case of 5 machines, where
all instances are solved for all possible job configurations.
Looking at subfigure 4b, which is organized by the number
of jobs for all possible machine configurations, it can be
seen that all instances are solved for 5 and 10 jobs, but there
is a notable decrease for the rest. Focusing on the set of 20
and 25 jobs, it can be observed that there is a slight decrease
from 25 machines onwards; later, the reasons for this are
analyzed. For instances with 50 and 100 jobs, the decrease
in the number of solved instances is exponential. Only all
instances are solved for a configuration of 5 machines for
100 jobs and 5 and 10 machines for 50 jobs. This figure
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Jobs Machines Solve Time Objective
GUROBI CPLEX Gecode GUROBI CPLEX Gecode

5

5 6499.47 9393.54 76754.74 0.58053 0.57924 0.7748
10 22177.73 35193.18 77122.47 0.46884 0.46842 0.64781
20 50222.29 57898.63 81637.16 0.42377 0.42422 0.58867
25 55920.19 59732.08 79771.76 0.41208 0.41279 0.5677
50 69226.88 71453.81 95645.56 0.39632 0.40691 0.53307
100 110177.22 123730.15 154180.72 0.38944 0.42882 0.51176

10

5 72263.13 76261.31 85388.49 0.56284 0.56433 0.77965
10 69831.23 71671.93 86539.69 0.44524 0.4482 0.64365
20 71619.72 74610.4 89860.43 0.38908 0.39532 0.5713
25 73930.71 78202.9 91969.19 0.3798 0.39247 0.54207
50 89935.3 95355.06 109638.51 0.36431 0.38019 0.49456
100 146282.37 152079.82 168202.69 0.35029 0.30281 0.35159

20

5 80190.01 88650.74 89079.98 0.65727 0.67151 0.83772
10 80369.98 89368.09 89895.89 0.48249 0.48393 0.71326
20 91070.63 83648.86 92953.44 0.40615 0.36374 0.60325
25 92555.52 86596.51 96516.25 0.38184 0.3135 0.58104
50 109441.69 97752.14 78306.1 0.35987 0.24087 0.20729
100 164169.07 161843.67 112923.84 0.29168 0.06245 0.00733

25

5 73156.78 86322.15 91381.59 0.64018 0.63401 0.84305
10 78504.99 83658.47 92142.26 0.57263 0.46831 0.73123
20 99400.75 83989.35 95774.25 0.46229 0.36985 0.62663
25 104469.18 76519.47 102202.35 0.42563 0.30161 0.61462
50 118524.24 127129.68 59800.26 0.31818 0.21552 0.13974
100 168354.77 Timeout 113885.23 0.28319 Timeout 0.01021

50

5 101811.91 86469.46 110038.97 0.70258 0.49251 0.86043
10 115365.19 71684.29 110542.27 0.56627 0.21168 0.75717
20 108631.5 117752.67 78930.63 0.37003 0.12673 0.66168
25 105251.06 120220 72639.27 0.43698 0.16123 0.57382
50 136252.05 Timeout 59343.32 0.47363 Timeout 0.14455
100 153826.43 Timeout 122941.2 0.91743 Timeout 0.04168

100

5 Timeout 114685.56 183151.94 Timeout 0.32913 0.86754
10 Timeout Timeout 180057.66 Timeout Timeout 0.77187
20 Timeout Timeout 139246.52 Timeout Timeout 0.68049
25 Timeout Timeout 122740.76 Timeout Timeout 0.59173
50 Timeout Timeout 116506.13 Timeout Timeout 0.4602
100 Timeout Timeout 157021.85 Timeout Timeout 0.13594

Table 1
Comparison of mean resolution time and mean objective function obtained with different solvers.

illustrates how the number of jobs and machines affects the
possibility of obtaining a solution to the problem at hand.

4.4. Algorithm selector results

Model Accuracy (%)
Logistic Regression 76.08
Gaussian Naive Bayes 48.93
Decision Tree 79.48
𝐾-Nearest Neighbors 78.34
Random Forest 82.87
XGBoost 83.26
MLP 82.81

Table 2
Table showing the training results of the different models

Table 2 shows the validation results of the tested models.
As can be seen, XGBoost is the model with the best valida-
tion accuracy. Training this model with the total training
data set and testing it with the test set finally yields an accu-
racy of 84.51%. This indicates that XGBoost performs well
during the validation phase and generalizes effectively to

unseen data. The high accuracy suggests that XGBoost’s
ensemble learning approach, which combines multiple de-
cision trees to improve performance, is particularly well-
suited to this dataset. Moreover, the performance difference
between XGBoost and other models like Random Forest and
MLP, which also showed strong results,

Figure 5: Confusion matrix for the algorithm selector predictions
(true algorithms on the y-axis, predicted algorithms on the x-axis).

The confusion matrix in Figure 5 presents the algorithm
selector’s classification results. Each cell value represents
the number of instances where the algorithm selector pre-
dicted the algorithm in the corresponding column for a
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problem best solved by the algorithm in the corresponding
row. For instance, the selector correctly identified GUROBI
for 611 out of the total instances where GUROBI was the
best choice. Similarly, GECODE was correctly identified 396
times. However, there are misclassifications, such as pre-
dicting GUROBI when CPLEX was optimal, which occurred
70 times.

An in-depth analysis of the precision and recall metrics
provides further insights into the performance of the al-
gorithm selector. GECODE achieved a precision of 90.20%,
indicating that 90.20% of the instances predicted as GECODE
were correctly identified. Its recall was 86.84%, signifying
that 86.84% of the actual GECODE instances were correctly
detected. This high precision and recall demonstrate the
algorithm selector’s robustness in identifying GECODE in-
stances accurately.

On the other hand, CPLEX showed a precision of 62.76%,
meaning that only 62.76% of the predictions for CPLEX were
accurate, and a recall of 73.75%, which indicates that 73.75%
of the actual CPLEX instances were correctly classified. The
lower precision for CPLEX suggests a higher rate of false
positives, which could imply that the algorithm selector
often misclassifies other algorithms as CPLEX.

For GUROBI, the precision was 89.85%, reflecting that
89.85% of the GUROBI predictions were correct, and the
recall was 86.66%, meaning that 86.66% of the actual GUROBI
instances were identified correctly. These values indicate a
strong performance, similar to GECODE, highlighting the
selector’s efficiency in recognizing GUROBI accurately.

These metrics, precision, and recall, are crucial for eval-
uating the algorithm selector’s effectiveness, as they pro-
vide a more comprehensive understanding of its perfor-
mance beyond simple accuracy. They highlight the selec-
tor’s strengths in accurately identifying certain algorithms
while also pointing out areas where misclassification occurs,
thus providing a clear direction for further improvements.

5. Conclusions
This study explores the complexities of JSP, emphasizing
its NP-completeness and diverse optimization goals such as
makespan, energy consumption, and tardiness. The prob-
lem presents significant computational challenges due to
its combinatorial nature, making timely optimal solutions
crucial in operations research and manufacturing.

An innovative aspect of this research is integrating ma-
chine learning techniques to enhance algorithm selection
for JSP instances. By extracting comprehensive features like
job and machine characteristics, release dates, and energy
requirements, models such as XGBoost and Random Forest
were effectively trained. These models accurately recom-
mend suitable solvers like GUROBI, CPLEX, and GECODE,
streamlining decision-making for solving diverse and com-
plex scheduling problems.

GUROBI proved particularly efficient for smaller to
medium-sized instances, consistently delivering optimal
and satisfactory solutions across different configurations.
Meanwhile, GECODE demonstrated robust scalability, ex-
celling in complex scenarios despite occasional computa-
tional challenges. This analysis underscores the importance
of selecting solvers based on specific problem parameters
to optimize solution quality and computational efficiency.

Looking ahead, the study suggests refining feature extrac-
tion methodologies to enhance the algorithm selector’s accu-

racy across a broader range of JSP scenarios. Advancements
in solver performance under varying constraints promise
to expand the practical utility of scheduling optimization
tools in real-world manufacturing settings, emphasizing
efficiency and sustainability.

Although the results obtained are not as high as those
reported in the literature, it should be noted that the energy-
aware JSP constitutes a more complex problem compared
to the standard JSP and flexible JSP found in the literature.
Furthermore, this study uses a smaller set of features than
those used in other studies, yet the accuracy achieved is not
significantly lower.

In conclusion, this work advances both academic under-
standing and practical applications by integrating traditional
optimization techniques with modern machine-learning ap-
proaches. It offers tools that can significantly benefit re-
search and industrial practices, addressing contemporary
challenges in operations management and manufacturing
logistics.
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Abstract
The Job Shop Scheduling Problem (JSP) is a pivotal challenge in operations research and is essential for evaluating the effec-
tiveness and performance of scheduling algorithms. Scheduling problems are a crucial domain in combinatorial optimization,
where resources (machines) are allocated to job tasks to minimize the completion time (makespan) alongside other objectives
like energy consumption. This research delves into the intricacies of JSP, focusing on optimizing performance metrics and
minimizing energy consumption while considering various constraints such as deadlines and release dates. Recognizing the
multi-dimensional nature of benchmarking in JSP, this study underscores the significance of reference libraries and datasets
like JSPLIB in enriching algorithm evaluation. The research highlights the importance of problem instance characteristics,
including job and machine numbers, processing times, and machine availability, emphasizing the complexities introduced by
energy consumption considerations.

An innovative instance configurator is proposed, equipped with parameters such as the number of jobs, machines, tasks,
and speeds, alongside distributions for processing times and energy consumption. The generated instances encompass
various configurations, reflecting real-world scenarios and operational constraints. These instances facilitate comprehensive
benchmarking and evaluation of scheduling algorithms, particularly in contexts of energy efficiency. A comprehensive set of
500 test instances has been generated and made publicly available, promoting further research and benchmarking in JSP.
These instances enable robust analyses and foster collaboration in developing advanced, energy-efficient scheduling solutions
by providing diverse scenarios.

Keywords
Job Shop Scheduling Problem, Instance Generation, Benchmarking, Energy consumption, Speed scaling

1. Introduction
The Job Shop Scheduling Problem (JSP) stands as a cor-
nerstone in the realm of operations research and opti-
mization, representing a fundamental challenge pivotal
for evaluating algorithmic effectiveness and performance.
In essence, JSP revolves around the intricate task of al-
locating jobs to machines within a manufacturing en-
vironment to optimize a plethora of performance met-
rics, ranging from makespan and flow time to tardiness,
resource utilization, and energy consumption [1]. The
process of benchmarking in JSP is multi-dimensional, ne-
cessitating the definition and evaluation of metrics such
as makespan, energy consumption, and tardiness to as-
sess scheduling efficiency and resource utilization [2].
Reference libraries and datasets like JSPLIB play an in-
dispensable role in these benchmarking endeavours, fur-
nishing researchers with a rich array of instances sourced
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from seminal works and experimental studies, thereby
enriching the evaluation of algorithms [3].

A profound understanding of problem instance char-
acteristics significantly shapes benchmarking efforts in
JSP. Factors such as the number of jobs and machines,
variability in processing times, machine availability, and
precedence relationships exert notable influences on al-
gorithm performance [4]. Furthermore, incorporating
energy consumption considerations, contingent upon
machine speed and operational attributes, introduces an
added layer of complexity to these instances [5]. The del-
icate balance between energy consumption and schedul-
ing decisions emerges as paramount in achieving energy
efficiency goals without compromising production tar-
gets [6].

In recent years, the spotlight on addressing energy ef-
ficiency within the realm of JSP has intensified, driven by
its profound environmental and economic implications
[7]. Strategies involving integrating speed-adjustable
machines and vehicles have been explored as avenues
to optimize energy consumption while upholding pro-
ductivity levels [8]. Concurrently, developing advanced
algorithms and optimization techniques tailored to tackle
energy-related challenges has seen significant advance-
ments, considering factors such as machine speed, idle
time, and energy requirements [9]. Real-world implemen-
tations of these energy-efficient strategies have yielded
tangible benefits, manifesting in substantial cost savings
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and positive environmental impacts [10].
In conclusion, the imperative of energy efficiency in

JSP research has become increasingly pronounced, paral-
leling the traditional focus on performance metrics [11].
Benchmarking is a linchpin in evaluating the efficacy
of energy-efficient scheduling strategies, furnishing in-
valuable insights into their ramifications on production
efficiency and energy consumption [12]. Manufacturers
can embark toward more sustainable and economically
viable operations by harnessing advanced optimization
techniques and leveraging real-world implementations.

2. Instance Configuration
Test sets play a vital role in JSP research by providing
a standardized platform for comparing algorithmic ap-
proaches. Their diversity enables researchers to evaluate
various algorithms, from heuristics to exact methods,
identifying strengths, weaknesses, and potential limi-
tations across different contexts [13]. However, as in-
dustrial systems evolve, the complexity of real-world
problems increases, necessitating the development or
expansion of test sets to simulate real-world scenarios
better.

To address this need, the proposed instance configura-
tor operates with the following parameters:

• 𝐽 = {0, . . . , 𝑛}: the set of jobs.

• 𝑀 = {0, . . . ,𝑚}: the set of machines.

• 𝑆 = {0, . . . , 𝑠}: the set of speeds, indexed by 𝑠 in 𝑆.

• 𝑇𝑗 : the set of tasks in job 𝑗, indexed by 𝑡𝑗𝑡 ∈ 𝑇𝑗 , ∀𝑗 ∈
𝐽, ∀𝑡 ∈𝑀 .

• 𝐷𝑗𝑡: the due date of task job 𝑡𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈𝑀 .

• 𝑅𝑗𝑡: the release date of task job 𝑡𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈𝑀 .

• 𝑃𝑗𝑡𝑠: the processing time of task job 𝑡𝑗𝑡, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈
𝑀, ∀𝑠 ∈ 𝑆.

• 𝐸𝑗𝑡𝑠: the energy consumption for processing task job
𝑡𝑗𝑡, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈𝑀, ∀𝑠 ∈ 𝑆.

The process of configuring instances, managed by Al-
gorithm 1, is initiated by receiving several input parame-
ters: the number of instances to generate 𝑄, the number
of machines 𝑀 , the count of jobs 𝐽 , the number of tasks
𝑡, the types of release and due dates 𝑟𝑟𝑑𝑑, random seeds
𝑠𝑒𝑒𝑑𝑠, and the distribution 𝑑𝑖𝑠𝑡.

Subsequently, the algorithm executes a series of steps
to generate instances systematically. The random seed is
initialized to ensure reproducibility, and an empty list 𝐺
is created to store the generated instances (Line 2). The

Algorithm 1 Instance Configurator
input: Quantity of instances 𝑄, Number of machines
𝑀 , Number of jobs 𝐽 , Number of tasks 𝑇 , Release and
due date type 𝑟𝑟𝑑𝑑, Random seed 𝑠𝑒𝑒𝑑, Distribution 𝑑𝑖𝑠𝑡
output: Generated instances 𝐺

1: 𝑆𝑒𝑡𝑆𝑒𝑒𝑑(𝑠𝑒𝑒𝑑)
2: 𝐺← [ ]
3: for 𝑞 from 1 to 𝑄 do
4: 𝑂 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐽𝑜𝑏𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠(𝑇, 𝐽,𝑀)
5: 𝑃 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒𝑠(𝐽,𝑀, 𝑆)
6: 𝐸 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐸𝑛𝑒𝑟𝑔𝑦(𝐽,𝑀, 𝑆)
7: 𝑅,𝐷 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝐷𝐷𝑎𝑡𝑒(𝐽,𝑀, 𝑑𝑖𝑠𝑡)
8: 𝐺← 𝐺 ∪ 𝐽𝑆𝑃 (𝑂,𝑃,𝐸,𝑅,𝐷)
9: end for

10: return 𝐺

algorithm generates jobs and tasks within a loop iterating
through each instance 𝑞 from 0 to 𝑄− 1 (Line 4).

Next, each job operation’s processing times and energy
consumption are generated.

𝑓(𝑥) = ⌊𝑒− 𝑥
100 × 100⌋ (1)

𝑔(𝑥) = 4.0704× log(2)

log(1 + (𝑥× 2.5093)3)
(2)

The functions responsible for generating the process-
ing times (line 5) and energy consumption (line 6) for the
combination of jobs, machines, and speeds are managed
by functions 𝑓(𝑥) 1 and 𝑔(𝑥) 2, as illustrated in Figure 1
as studied in [14]. These functions balance the variables
to establish a correlation between processing time and
energy consumption. In these equations, 𝑥 represents the
processing time for Equation 𝑓(𝑥) 1 and the energy con-
sumption for Equation 𝑔(𝑥) 2. Speeds are generated by
obtaining the energy consumption percentage for each
speed using Equation 𝑓(𝑥) 1, which models an inverse
relationship between processing time and energy con-
sumption. This involves dividing the interval [0.5, 3] into
|𝑆| − 1 equal parts, where the boundaries of these new
intervals correspond to the energy consumption percent-
ages for each speed. Subsequently, Equation 𝑔(𝑥) 2 is
utilized to determine the fraction of time corresponding
to each speed.

Release and due dates are computed using functions
based on the chosen distribution (Line 7). Each distri-
bution offers distinct characteristics suited for modeling
various real-world scenarios.

The exponential distribution, defined by its probability
density function 𝑓(𝑥;𝜆) = 𝜆𝑒−𝜆𝑥, is ideal for modeling
the time until an event occurs, such as machine failures or
job arrivals, assuming a constant hazard rate 𝜆 > 0. Its
mean is 1

𝜆
. The Gaussian distribution, with mean 𝜇 and

standard deviation 𝜎, has a probability density function
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Figure 1: Distribution of processing times and the relationship between time and energy

𝑓(𝑥;𝜇, 𝜎) = 1

𝜎
√
2𝜋

𝑒
− (𝑥−𝜇)2

2𝜎2 . This distribution repre-
sents naturally occurring variations in processing times
or delays. The uniform distribution generates values
evenly within a specified range, defined by the proba-
bility density function 𝑓(𝑥; 𝑎, 𝑏) = 1

𝑏−𝑎
, where 𝑎 and 𝑏

are the lower and upper bounds, respectively. It provides
a straightforward way to explore a range of scenarios
without bias towards any particular value. These distri-
butions were selected due to their unique properties and
common use in modeling different real-world data types,
enhancing the diversity and comprehensiveness of the
generated instances [15].

Additionally, a random start is chosen for each job
within a specified range for the release and due date in-
tervals. The time interval between release and due dates
is determined based on the median processing time. A
random value within the corresponding interval is gen-
erated depending on the chosen distribution. This com-
prehensive approach ensures the creation of instances
encompassing a wide range of scenarios, facilitating ro-
bust analyses and evaluations.

These steps culminate in constructing a JSP instance
(Line 8), incorporating the generated data. Finally, the
algorithm returns the list 𝐺 containing the generated
instances. This systematic approach ensures the creation
of instances that cover diverse scenarios, which is crucial
for comprehensive analyses and evaluations.

3. Generated Problems
A comprehensive set of random instances has been gen-
erated following the procedure described in Algorithm
1. These instances exhibit diverse characteristics: the
number of jobs ranges from thirty to two hundred fifty,
and the number of machines ranges from three to twenty.
Normal, exponential, and uniform distributions were uti-
lized in the generation process.

Each instance was extended by relaxing release and
due date restrictions. Leveraging three different speed
scales, variations of each problem were created, maintain-

ing identical data but with different operational speeds.
Specifically, two additional instances were derived from
each original: one incorporating the first, third, and fifth-
speed scaling and another utilizing only the third-speed
scaling.

In addition to varying job and machine counts, the in-
stances encompass different operational complexities and
constraints. For instance, some involve jobs with prece-
dence constraints, necessitating certain jobs to be fin-
ished before others begin. This complexity challenges al-
gorithms to find optimal solutions efficiently. The chosen
distributions—normal, exponential, and uniform—offer
a spectrum of scenarios, ranging from predictable and
evenly spread job times to highly variable and unpre-
dictable duration. This diversity ensures that the gener-
ated instances serve as robust benchmarks to evaluate
the performance of scheduling algorithms under varied
conditions.

Moreover, a collection of 500 test instances has been
generated and made publicly accessible through [16].
These instances incorporate mixed distributions and
speed scalings, providing researchers with a compre-
hensive dataset to evaluate the efficacy of scheduling
algorithms. The research group aims to foster collabora-
tion and innovation in planning and scheduling research
by facilitating access to these instances. Researchers can
use these standardized problems to compare methods
and contribute to advancing scheduling solutions.

In summary, the generated instances cover a wide
range of job and machine configurations, distribution
types, and speed variations, making them suitable for
diverse scheduling and planning research applications.
Their availability for public use enhances their utility,
promoting collaboration and enabling continuous im-
provement and benchmarking in the field.
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Abstract 
Visualization plays a critical role in the purchasing process, particularly for customized products, as 
it improves customer engagement and decision-making. Despite the importance of product 
configurators in presenting customized products, there is limited research on the characteristics of 
visualization modes that configurators employ. This study aims to address this gap by developing an 
evaluation framework consisting of 11 descriptive variables: embodiment, presence, interactivity, 
authenticity, realism, media richness, avatar similarity, functional control, visual control, interaction 
richness, and vividness. Each variable of the framework is defined and exemplified by practical 
examples. These variables, derived from the literature on e-commerce and customer experience, offer 
a structured framework to describe and compare product visualization modes in configurators. 

Keywords  
configurator, product visualization, virtual reality, augmented reality1 

1. Introduction 
Visualization is a crucial element in the purchasing 
process, especially for customized products. The 
configuration process demands effort from the customer 
but ultimately strengthens their bond with the product. 
According to Di et al. [1: 550], images enhance attention, 
trust, and conversion rates in the purchasing process. 
More images provide a more complete visual 
representation of the product, which is effective in 
boosting sales. Interactive and visually appealing 
configurators help customers make informed decisions 
aligned with their expectations. Thus, visualization may 
reduce choice complexity and improve consumer 
benefits from customization. 

Effective visualization is a powerful tool for 
knowledge transfer and assimilation, having been used 
since ancient times [2, 3, 4]. The transfer and 
assimilation of visual knowledge is simpler and faster 
than that of textual knowledge [3, 4]. The textual 
representation of a system of relationships through, for 
example, a table may also be extremely accurate, but the 
absence of visualization makes the passage of 
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information hermetic and tedious. This is an example of 
why highly valuable work without visualization can be 
difficult to understand, even for experts in the same 
field, not to mention professionals from other scientific 
areas [3]. In the case of customized products, the variant 
may be novel and difficult to understand to the 
customer, thus the use of visualization may reduce the 
cognitive complexity borne by the customer at the stage 
of selecting the most suitable configuration to satisfy 
his/her needs. 

Visualization technologies are undergoing 
significant advancements. For example, Apple's Vision 
Pro revolutionizes visual representation by projecting 
high-resolution output directly into the eyes, controlled 
by eye tracking and gestures, eliminating traditional 
peripherals such as mouse and keyboards [5]. Advanced 
visualization methods such as augmented reality (AR), 
virtual reality (VR), and mixed reality (MR) are 
becoming more and more widespread. The AR, VR, and 
MR market was valued at approximately $26 billion in 
2021 and is expected to reach $242 billion by 2028 [6]. 
Consumer trends indicate that 71% would shop more 
frequently using AR, 61% prefer AR-equipped stores, 
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and 55% find that AR makes shopping more enjoyable 
[7]. 

An important tool for presenting and selling 
customized products is the configurator. However, 
research on the visualization of configurable products is 
limited and a comprehensive and comparative 
description of the various product visualization modes 
in configurators is lacking [8]. 

This research starts to fill this gap by proposing an 
evaluation framework composed of 11 descriptive 
variables. These 11 variables, derived from customer 
experience and e-commerce literature, enable a 
systematic description of the product visualization 
modes that a configurator can adopt. The framework 
defines the 11 descriptive variables according to the 
literature and presents examples of their modality. The 
proposed framework is designed to evaluate all 
visualization modes used in product configurators, 
encompassing both traditional (e.g., 2D and 3D images) 
and new modes (e.g., VR, AR, and MR), serving as a 
consistent tool for describing and comparing different 
visualization modes in configurators. 

2. Theoretical background 
There is a need for comparative descriptions of product 
visualization modes in configurators. To be able to 
describe and compare in a structured way these product 
visualization modes, a framework that includes a set of 
description variables that allow to describe in a 
structured way the visualization modes is needed. With 
the goal of finding the dimensions of the framework 
along which to describe and evaluate visualization 
modes in configurators, the relevant literature was 
searched, although it did not refer to product 
configurators. Three sources [9, 10, 11] and their 
references are taken as a starting point for our research. 

Zeng and Richardson [9] conducted a review of the 
literature on product presentation characteristics in e-
commerce. This literature review synthesizes existing 
research findings, explores key theoretical foundations, 
and highlights the predominant research theories and 
methodologies employed in the field. It also categorizes 
the constructs used to describe the characteristics of 
presentation formats, consumer reactions and 
performance, as well as marketing effects, such as 
attitudes towards the product and purchase intention. 

Flavián et al. [10] discussed the impact of VR, AR, 
and MR on the integration of physical and virtual objects, 
leading to new hybrid customer experiences. They 
highlighted the lack of clear boundaries between these 
technologies and experiences, proposing a new 
taxonomy, the ‘EPI Cube,’ to classify current and 
potential technologies that enhance customer 
experiences. The ‘EPI Cube’ is based on three dimensions 

of description: (technological) embodiment, 
(psychological) presence, and (behavioral) interactivity. 

Recently, Hsu et al. [11] empirically investigated 
how key variables (interactivity, authenticity, vividness, 
product presence, and instant gratification) affect 
impulsive purchasing intentions using AR. 

3. Framework for visualization 
description 

The framework variables are taken from the work of 
Zeng and Richardson [9], Flavián et al. [10], and Hsu et 
al. [11] and the references cited in these papers. 
Furthermore, focused searches of literature on specific 
variables and real applications were performed to clearly 
define or to exemplify the variables considered in the 
present framework. Through this process, 11 key 
variables have been identified: 

1. Embodiment 
2. Presence 
3. Interactivity 
4. Authenticity 
5. Realism 
6. Media richness 
7. Avatar similarity 
8. Functional control 
9. Visual control 
10. Interaction richness 
11. Vividness 

Each variable in the framework is defined and 
exemplified by practical examples. By integrating and 
extending previous works, this framework provides a 
more comprehensive set of variables, scientifically 
justified by its potential to offer a more complete and 
nuanced understanding of diverse aspects of product 
visualization modes for evaluating configurators. 

3.1. Embodiment 
3.1.1. Definitions 

“Ihde [12] regarded embodiment as situations in which 
technological devices mediate the user's experience and, 
as a consequence, the technology becomes an extension 
of the human body and helps to interpret, perceive and 
interact with one's immediate surroundings” [10: 550]. 

Technological embodiment involves two important 
factors: sensory stimulation [10, 13, 14], i.e., the process 
of activating and responding to the body's senses 
through received stimuli [13, 14]; and immersion [10, 13, 
15], i.e., the ability of the technology to allow users to 
better focus on what is in front of them and to extend 
their perception of time; it can have positive effects on 
experience satisfaction [10, 16]. 
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3.1.2. Examples 

Intraocular lenses, which belong to the category of 
devices implanted in the human body, guarantee a 
maximum level of embodiment. They are small contact 
lenses that are permanently implanted in the eye in 
order to restore the visual capacity that has been 
impaired as a result of operations or pathologies 
affecting this apparatus [17]. Embodiment is maximized 
because the user is unaware that he or she is wearing a 
device, but benefits from countless advantages in daily 
life; in this case, the technology is in complete symbiosis 
with the human body and acts as an extension of it. 

Figure 1: Intraocular lens. Photograph: Frank C. Müller 
[Public domain], via Wikimedia Commons. 
(https://commons.wikimedia.org/wiki/File:Hinterkamm
erlinse_01_(fcm).jpg). 

3.2. Presence 
3.2.1. Definitions 

Vonkeman et al. [18: 1039] define presence as "the 
degree to which an online product experience appears to 
be unmediated, rather than mediated”. They build upon 
the definition of Waterworth et al. [19], which describe 
“presence as a concept that provides the user with the 
illusion of nonmediation, is driven by external 
technological sensory cues, and is subjective in nature 
by focusing on the experience of the user” [18: 1039]. 

Flavián et al. [10: 551] regard presence “as a 
psychological stage (not related to a specific technology) 
and the medium is simply the way to arrive at that stage 
[20]”. They define presence as “the user's sensation of 
being transported to a distinct environment outside the 
real human body [13]” [10: 551]. 

3.2.2. Examples 

Presence is a highly subjective sensation and can 
therefore be evoked in different ways depending on the 
user in question. This perception can be evoked by 
reading a book, listening to a song, and interacting with 

video games [10, 21]. Books and video games allow one 
to identify with the story: in a detective story, one can 
identify with the investigator, while in an adventure 
game, one plays the role of the protagonist directly. 
Music allows us to abstract from the real world through 
lyrics or specific sounds, such as the rhythm in South 
American music, which can make us imagine being in 
those faraway places. 

Presence can be provoked in a virtual environment 
when there is a sense of 'illusion of place' [10, 22]. 
Virtual reality systems, such as visors, can facilitate this 
factor by providing deep sensory stimulation that is so 
immersive that they can cause a nausea-like disturbance 
related to perceived movement within the device [23]. 

3.3. Interactivity 
3.3.1. Definitions 

Interactivity is defined as “the extent to which users can 
participate in modifying the form and content of a 
mediated environment in real time” [24: 84]. It regards 
“the users' capacity to modify and receive feedback to 
their actions in the reality where the experience is taking 
place [25, 26]. […] Interactivity is a behavioral factor in 
that users have the ability to control and manipulate the 
environment that is in front of them [27]” [10: 552]. 

The mechanistic or structuralist approach [28] 
“considers interactivity as the response to the attributes 
of the technology and proposes that it can be enhanced 
through the development of these technologies” [10: 
552]. 

Interactivity is not a yes/no property: it is a matter 
of degree. “Degree to which users of a medium can 
manipulate the form or content of the mediated 
environment” [9: 5] [e.g., 18, 29]. In the case of AR, Hsu 
et al. [11: 5] define interactivity as the “degree to which 
users can choose, browse, and look up product 
information and provide feedback through an AR app 
[24, 30]”. 

3.3.2. Examples 

The characteristic of interactivity is easily found in the 
everyday life of each individual; just think of the use of 
a computer or a smartphone, where a multitude of 
interactions take place, consisting of making changes to 
the system and receiving feedback on them.  
In virtual reality devices, it turns out that the control of 
navigation is the basic level of interactivity present; 
think of the first prototype ‘Sensorama,’ which played 
short films and multimedia content with the 
involvement of multiple senses [31]. 

An internal tool such as the viewer can present both 
levels of interactivity: while watching a film, the device 
allows viewing in a controlled navigation mode; on the 
other hand, while playing a video game, using the 
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joystick and tactile devices (such as suits and gloves), 
one can modify and monitor the state of the objects 
presented [10, 22]. The same is true for an external tool 
such as a computer. When buying a product on Amazon, 
the process is controlled and the consumer simply 
follows the predetermined steps. In contrast, when using 
a product configurator such as Nike's, the customer is 
able to manipulate and configure the product as he or 
she wishes. 

3.4. Authenticity 
3.4.1. Definitions 

Authenticity is the “degree to which users understand a 
product based on their prior consumption experience, 
knowledge, or time and space in an AR app 
environment” [11: 5]. The concept of authenticity by 
Grayson and Martinec [32] is examined in relation to 
consumers' evaluation of market offerings. This 
approach distinguishes the two types of authenticity: 

• Indexical authenticity gives the term 
'authentic' the meaning of describing 
“something that is thought not to be a copy or 
an imitation [33: 400, 34: 157]” [32: 297]. 

• Iconic authenticity gives the term 'authentic' 
the meaning of describing “something whose 
physical manifestation resembles something 
that is indexically authentic. Authors 
sometimes distinguish this sense of 
authenticity from indexical authenticity by 
using phrases such as ‘authentic reproduction’ 
or ‘authentic recreation’ [33: 399, 35: 421-422, 
36: 208]” [32: 297]. 

Algharabat and Dennis [37: 6] propose the following 
definition of “perceived authenticity in a computer-
mediated environment: Authenticity is a psychological 
state in which virtual objects presented in 3D in a 
computer-mediated environment are perceived as actual 
objects in a sensory way” [37: 6]. 

3.4.2. Examples 

According to the definition of indexical authenticity, 
Jimmy Stewart's handprints in the concrete of 
Grauman's Chinese Theatre in Los Angeles are 
considered authentic if they are perceived to be the 
actor's original and genuine handprints [32, 38]. 
According to the description of iconic authenticity, 
silver pieces available in a museum gift shop are 
considered authentic because they are believed to bear 
remarkable similarities to coins produced by Spanish 
colonies in the 16th century [32, 39]. Furthermore, to 
judge the authenticity of a Victorian-era chair, a 

consumer must have some basic or more detailed idea of 
how it looks and how it is used [32]. 

In general, a product image that can be considered 
authentic is a photograph of it, as it allows the user to 
see the actual condition and characteristics of the item. 
The product configurator of the company Design Italian 
Shoes [40], thanks to its 3D model animation, allows the 
buyer to perceive the displayed article as tangible. Due 
to this function, the visual sense processes a concrete 
image of the item to be purchased. 

 
Figure 2: Shoe configurator [40]. Screenshot from 
https://www.designitalianshoes.com/apps/zakeke/c
/verdi-custom?sku=120A00020106XX_353535, with 
permission from DIS - Design Italian Shoes. 

3.5. Realism 
3.5.1. Definitions 

“Realism refers to the extent to which one believes the 
virtual environment is real [41] – the degree to which 
one feels the virtual space represents the actual physical 
space” [29: 1055]. It also “refers to the perceived 
correspondence between a technology-mediated 
experience and a similar experience not mediated by 
technology [42]” [43: 3]. 

3.5.2. Examples 

When designing a building, architects take advantage of 
3D virtual environments, software with a high degree of 
realism, in which physical spaces that do not yet exist 
can be created and experienced [29]. 

 
Figure 3: Three visual presentations of an apartment 
[29: 1058]. Reprinted from Computers in Human 
Behavior, 29, S. van der Land, A. P. Schouten, F. 
Feldberg, B. van den Hooff, M. Huysman, Lost in space? 
Cognitive fit and cognitive load in 3D virtual 
environments, 1054-1064, Copyright (2013), with 
permission from Elsevier. 
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Van der Land et al. [29] state that when the degree 
of realism of a virtual environment reaches the affinity 
of the real world, the user is assisted by the technology 
in the process of making decisions and understanding 
their concrete problem. 

The 'Street View' feature of Google Maps provides a 
realistic visualization of the route or location that the 
individual is searching for. Thanks to this feature, the 
user can get an idea of what he or she will be facing in 
the real future, helping to increase safety. Manufacturers 
of in-car navigation assistance devices offer reality 
visualization features that help drivers. For example, 
they provide high-quality images when approaching a 
motorway exit or give advice on which lane to take in 
situations with complex arterial roads [44]. 

3.6. Media richness 
3.6.1. Definitions 

Media richness regards the “extent to which interface 
facilitates communication [45]” [9: 5]. “Media can be 
characterized as high or low in 'richness' based on their 
capacity to facilitate shared meaning” [46: 358]. 
According to Daft et al. [46], this factor is based on a 
combination of four criteria. 

1. Feedback: instant feedback that allows for 
specific questions and corrections during the 
interaction;  

2. Multiple cues: a range of cues from which a 
message can be composed, including physical 
presence, body gestures, graphic symbols, 
numbers, and words;  

3. Language variety: the range of meanings that can 
be conveyed by language symbols. For example: 
numbers convey greater precision than natural 
language, while the latter helps to convey 
understanding of a wider range of ideas and 
concepts [46, 47]; 

4. Personal focus: a message is conveyed more fully 
when its communication evokes personal feelings 
and emotions. 

3.6.2. Examples 

The following four media channels (unaddressed 
documents, addressed documents, telephone, and face-
to-face) are based on the hierarchy proposed by Daft et 
al. [46] and are presented in ascending order of media 
richness, from low to high. 

Examples of unaddressed documents are fliers, 
bulletins, and standard quantitative reports. They 
mainly use messages consisting of three signals: graphic 
symbols, words, and numbers. They are useful for 
communicating quantifiable information, but they lack 
the ability to convey articulated ideas and concepts. 

They also lack personalization because they are 
delivered to a large audience and it is impossible to get 
feedback. 

Addressed documents, such as letters, express 
written information. They are suitable for presenting 
personalized content tailored to the individual, thus 
creating a psychological connection with the reader. 
Despite this positive criterion, the feedback is still slow. 

The telephone call has the ability to provide 
feedback quickly. Interlocutors rely on their own voice, 
tone, and language skills to convey messages. This type 
of channel, which uses natural language communication 
in real time, is quite rich. A rich communication tool 
facilitates intuition and allows for rapid understanding 
of the content presented. 

The 'face-to-face' conversation is considered to be 
the form of interaction with the highest level of this 
factor. It allows for a rapid exchange of feedback and the 
creation of a direct connection with the interlocutor. The 
sender sends multiple signals, making the message 
comprehensive; the receiver develops empathy more 
quickly and the content may evoke emotions in him/her. 

3.7. Avatar similarity 
3.7.1. Definitions 

The avatar is everyone's technological alter ego and the 
digital representation that each user chooses to identify 
themselves in an online community. 

Avatar similarity is defined “as the perceived 
similarity between the avatar' s physical appearance and 
the user's physical appearance; the extent of an avatar's 
similarity is regarded as the degree of reflection of self-
concept" [48: 715]. The construction of this virtual 
element involves the creation of a bond with it, as it is 
seen as a representation of oneself within the simulated 
environment [48, 49, 50]. 

3.7.2. Examples 

Suh et al. [48] highlight methods that allow the 
generation of an avatar in its likeness.  We begin with 
the production of an avatar that incorporates the feature 
of facial similarity. Two production methods are 
presented: a three-dimensional facial scan and the 
selection of a generic face among those proposed, with 
modifications of the features considered significant. A 
3D scanner makes it possible to obtain the precise shape 
of the face; during the scan, several high-resolution 
digital photographs are taken, resulting in a virtual face. 
The subject will undoubtedly perceive a closer 
resemblance to the first process described. In a very 
similar way, body similarity has been achieved using 
three-dimensional body scanning and the use of the 
body mass index. Although it is clear that the first 
technique gives a better result, it has a number of 
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limitations, such as the cost of the machine and a 
difficult detection procedure. The second method 
requires the subject to enter values such as height, 
weight, and age, and to select the body shape that most 
resembles their own from those presented. One hundred 
body shapes are included in the database, and the system 
processes the most suitable according to the data 
received; the user can then model the features that he or 
she considers most important. 

3.8. Functional control 
3.8.1. Definitions 

“Functional control enables consumers to explore and 
experience different features and functions of products” 
[51: 111]. Functional control regards the “manipulation 
of product functionality to understand how a product 
works [51]” [9: 5]. 

3.8.2. Examples 

The functional control enabled by software such as 
Shockwave allows consumers to test different attributes 
of products on their computers [51]. 

An obvious demonstration is online interaction with 
some product configurators, such as those for electronic 
watches [51]. As the user adds new features, such as 
buttons to the item, the cyber product is updated, and its 
virtual operation mirrors real behavior. Reactions, such 
as the sound produced by pressing a button, can be 
reproduced by the sound emitted by clicking on the 
virtual representation of that particular item. 

It is worth mentioning PhET's website for creating 
simulated electrical circuits, as it clearly implements this 
factor. By simply clicking on the various objects 
presented in the interface, it is possible to create an 
electrical circuit and simulate it so that the user can 
understand how it works in order to implement it in 
practice. 

3.9. Visual control 
3.9.1. Definitions 

“Visual control enables consumers to manipulate Web 
product images, to view products from various angles 
and distances” [51: 111]. It regards the “manipulation of 
product images to understand product looks by moving, 
rotating and zooming [51]” [9: 5]. 

3.9.2. Examples 

Functionalities such as panning, rotating and zooming a 
virtual product image allow the user to enjoy visual 
control. The latter, implemented in software such as 
QuickTime and Flash, allows consumers to manage 
visual operations using the mouse and keyboard [51]. 

This factor is particularly noticeable when 
interacting with the graphical representations in online 
configurators. Ikea's virtual environment allows for an 
extremely detailed visual experience for the consumer 
[52]. Once the room has been configured, it is possible 
to move around the room using the mouse to view any 
details. 

3.10. Interaction richness 
3.10.1. Definitions 

Interaction richness is the “possibility of interaction 
with products and seller [53]” [9: 5]. It is also useful to 
quote the definition of ComputerLanguage.com [54], 
where ‘rich interaction’ is described as a beneficial and 
pleasant user experience when using an electronic 
device. It is worth pointing out that the concept of ‘rich’ 
is constantly evolving according to the technologies 
available; in fact, today it means software with a very 
intuitive and easy-to-use interface, while in the future it 
will be through tools such as automatic assistance and 
voice recognition. 

3.10.2. Examples 

The experiment by Jahng et al. [53] provides two 
examples with different levels of interaction richness for 
each of the dimensions mentioned above. The richness 
of interaction with the salesperson can be achieved 
through two means of communication: email and an 
interface implementing real-time two-way audio and 
one-way video. It is clear that the second interaction is 
richer because it makes the product presentation more 
effective and the communication support to the 
customer more direct. 

On the other hand, the richness of the interaction 
with the product can take the form of a simple static 
image associated with a textual description of the 
specifications, or an interactive three-dimensional test 
of the product features accompanied by an explanation. 

The effectiveness of the latter is obvious, as it allows 
better manipulation to understand the features and 
overall functioning of the product. Banking service sites 
such as Fineco offer a feature such as 'live chat'. Live chat 
is a type of customer service software that allows 
visitors to interact with operators in real time and 
through a chat window [55]. It is clear that effective 
customer service is provided through interactive 
interfaces that allow the user to engage in profitable 
communication before and after purchase. 

3.11. Vividness 
3.11.1. Definitions 

“Vividness means the representational richness of a 
mediated environment as defined by its formal features, 
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that is, the way in which an environment presents 
information to the senses” [24: 75]. “Vividness refers to 
the abundance of information that an external 
environment (e.g., AR app) gives to the human senses, 
of which perceptual breadth and perceptual depth are 
the two primary variables [24]” [11: 4]. “Perceptual 
breadth refers to the extent to which an individual 
utilizes multiple sensory modalities to perceive 
information simultaneously” [11: 4]. “Perceptual depth 
is defined as the measure of both the quantity and 
quality of information received by the senses” [11: 4]. 

3.11.2. Examples 

“The quality of the media directly impacts perceptual 
depth, and more advanced technology (e.g., AR) 
generally has better perceptual depth performance” [11: 
4]. Vonkeman et al. [18] present interesting examples of 
vividness while investigating the effect of different 
product (in the specific case sunglasses) display formats, 
namely: static images, 360-degree rotation tool and 
virtual mirror. 

Figure 4: Virtual mirror [18: 1046]. Reprinted from 
Information & Management, 54, C. Vonkeman, T. 
Verhagen, W. van Dolen, Role of local presence in online 
impulse buying, 1038-1048, Copyright (2017), with 
permission from Elsevier. 

The static images are captured by a simple camera 
and are noninteractive, whereas the 360-degree rotation 
tool allows the displays to be rotated by clicking and 
dragging the mouse. A webcam captures the 
participants' faces and transfers them to the screen via a 
‘virtual mirror’ application by placing the product on it. 
The three presentation modes differ in terms of 
vividness, particularly in terms of depth, i.e., the quality 
of sensory stimulation provided. Static images provide 
fixed visual input and elicit the lowest level, while the 
360-degree rotation tool and the 'virtual mirror' provide 
higher levels through real-time manipulation. The latter, 
in particular, through the captured image of the face, 
provides a higher quality of representation, and thus a 
higher level of vividness. 

4. Discussion and conclusion 
This paper continues the line of research regarding 
visualization in configurators [e.g., 8, 56]. In particular, 
it contributes to that line by distinguishing dimensions 
for describing and evaluating product visualization 
modes by drawing on literature from e-commerce and 
customer experience. Based on literature on e-commerce 
and customer experience we identified a list of 11 
variables that can be used as a framework for describing 
and evaluating all product visualization modes in 
configurators. Each variable of the framework is defined 
and exemplified by practical examples. 

While this study provides a starting point for 
evaluating product visualization modes in configurators, 
it predominantly draws from the e-commerce domain. 
Consequently, certain aspects specifically related to the 
VR/AR/MR domain may not be fully captured. For 
example, in immersive environments, flow, motion 
sickness, dizziness due to avatar similarity, and the 
uncanny valley effect may arise. Future research could 
integrate insights from related disciplines, particularly 
those focusing on immersive technologies, to enrich the 
framework or to identify relationships among the 
framework's variables and other relevant outcome 
variables. 

Additionally, we acknowledge that some of the 
proposed 11 variables may be correlated. However, at 
this stage, there is no empirical or theoretical basis to 
reduce them to a smaller set. We believe it is beneficial 
to present all variables and address potential 
consolidation in future research. 

Regarding the practical contributions of this study, 
the identified dimensions can serve as valuable tools for 
managers who need to select visualization alternatives 
and for designers responsible for developing product 
visualization interfaces in configurators. The proposed 
framework, when applied to describe and compare 
different visualization modes, allows the presentation 
and comparison of the unique features, advantages, and 
disadvantages of the modes. This detailed description is 
effective for managers and designers who are choosing 
the most suitable product visualization mode for their 
specific context, providing crucial support during the 
evaluation process. Additionally, this framework allows 
one to systematically compare these visualization 
modes, simplifying the decision-making process. 

However, the study did not apply these evaluation 
dimensions to the various visualization modes in 
configurators, which would further benefit both 
managers and designers. Therefore, the next step 
involves characterizing these visualization modes on the 
basis of the 11 dimensions that comprise the proposed 
framework. To achieve this, it is necessary to develop 
appropriate measurement metrics. While some metrics 
have already been proposed in the literature, others will 
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need to be developed. In any case, it is crucial to adapt 
these metrics and test their effectiveness within the 
context of configurators. 

Finally, new technologies come with limitations in 
costs and benefits. High development and 
implementation costs, including hardware and software, 
can be significant barriers. User accessibility and the 
need for specialized equipment could also limit 
adoption. For products not requiring spatial interaction 
or immersive experiences, traditional visualizations can 
still provide a satisfactory configuration experience at a 
lower cost. Future research should explore cost-benefit 
analyses to identify scenarios where advanced 
visualization modes offer distinct advantages over 
conventional approaches. 
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Using Answer Set Programming for Assigning Tasks to
Computing Nodes
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Abstract
Allocating tasks to computing nodes in a network is an important configuration problem. In the case of fail-safe networks,
such configuration must be changed during operation if a computing node fails. Hence, a fast configuration is required. In
this paper, we formulate a tasks-to-computing-nodes assignment problem and its constraints using answer set programming.
We performed an initial experimental evaluation utilizing several smaller to mid-size problem instances to show whether
logic reasoning based on answer set programming is feasible for practical applications. We discovered that reasoning is fast
if a solution exists but not when there is no solution. Further constraints help to decide that a problem instance is unsolvable
early in the search, which improves the outcome.

Keywords
Configuring computing nodes, ASP models for configuration, Experimental analysis

1. Introduction
There has been plenty of work in the area of configuration
and recommender systems, including service configura-
tion [1], governance systems [2], or product configura-
tion [3] to refer to recent work. However, answer set
programming for representing models used for config-
uration and reasoning to obtain valid configuration has
recently gained more attention, e.g., see [3, 4, 5]. In this
paper, we contribute to this research direction and intro-
duce a model and an evaluation for configuring networks
comprising computing nodes for executing pre-defined
tasks. The underlying problem is related to scheduling
and shift designs [6].

The main motivation behind our work comes from
practical applications, where, for example, tasks, i.e., pro-
grams, have to be deployed on computing nodes in a
network. Although this problem can be seen as a static
one that must only be solved before the operation, we
may require to re-configure such a task assignment dur-
ing operation whenever a computing node fails (see, e.g.,
[7]). Such re-configuration tasks have to be carried out
under time restrictions. To evaluate whether modern
reasoning methods like answer set programming can be
used for this task, we conduct an experimental evalua-
tion. This evaluation comprises several instances of the
corresponding task to computing node assignment prob-
lems considering various sizes of nodes and tasks. The
evaluation utilizes the answer set programming solver
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clingo [8]. The question we want to answer is regard-
ing the approach’s limitations regarding the problem size.
Can we use answer set programming (and in particular
clingo) to provide task assignments fast enough to be
used during operation?

We structure this paper as follows. First, we introduce
the underlying configuration problem and clingo im-
plementation. Afterward, we discuss the experimental
evaluation, i.e., the basic setup and the results obtained.
Finally, we conclude the paper.

2. Problem description
We start defining the task to node assignment problem.
We assume we have 𝑘 computing nodes 𝑛1, . . . , 𝑛𝑘 and
𝑛 tasks 𝑡1, . . . , 𝑡𝑛 to be assigned to the nodes. For each
node 𝑛𝑖, we know the maximum number of tasks 𝑐(𝑛𝑖)
it can hold and the available memory 𝑚(𝑛𝑖). For each
task 𝑡𝑗 , we know its memory consumption 𝑚(𝑡𝑗). From
this knowledge, we obtain several constraints an as-
signment must fulfill to be valid. In the following, we
formalize these constraints assuming that the function
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖) returns a set of tasks that is assigned to a
node 𝑛𝑖

First, the required memory from the tasks assigned to
a node shall never exceed the available memory of this
node. These constraints can be formalized as follows:

∀𝑖 ∈ {1, . . . , 𝑘} :

⎛
⎝ ∑︁

𝑡𝑗∈𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖)

𝑚(𝑡𝑗) ≤ 𝑚(𝑛𝑖)

⎞
⎠

(1)
Second, the number of tasks assigned to a node shall
never exceed the maximum number of tasks the node
can hold, i.e., formally, we write:

∀𝑖 ∈ {1, . . . , 𝑘} : (|𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖)| ≤ 𝑐(𝑛𝑖)) (2)
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A solution to the tasks to computing nodes assignment
problem is an assignment of all tasks to all nodes such
that ∀𝑗 ∈ {1, . . . , 𝑘} : ∃𝑖 ∈ {1, . . . , 𝑛} : 𝑡𝑗 ∈
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖), there is no tasks assigned to two different
nodes, i.e., ∀𝑖, 𝑗 ∈ {1, . . . , 𝑘}, 𝑖 ̸= 𝑗 : 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖) ∩
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑗) = ∅, and all constraints are fulfilled. Such
an assignment is a valid one and may not exist. For ex-
ample, if the number of tasks exceeds the number of free
slots of the nodes or if the required memory for the tasks
is not provided, there is no solution. Hence, we have
two necessary conditions that must hold for obtaining a
solution, i.e.:

𝑛 ≤
𝑘∑︁

𝑖=1

𝑐(𝑛𝑖) (3)

𝑛∑︁

𝑗=1

𝑚(𝑡𝑗) ≤
𝑘∑︁

𝑖=1

𝑚(𝑛𝑖) (4)

It is worth noting that similar problems have additional
constraints, e.g., stating that tasks need to be together
in the same computing node. We may also introduce
optimality criteria like preferring solutions requiring the
least amount of computing nodes. Furthermore, we may
also consider variants of the problem, i.e., reconfiguration
of assignments. In the context of this paper, we do not
tackle such extensions. We solely focus on answering
the question regarding the applicability of the answer
set program to solve the problem within a reasonable
amount of time.

After outlining the problem in general, we present a
solution using answer set programming where we rely
on the syntax of the clingo solver1 [8], which is similar
to the Prolog language. Due to space restrictions, we
do not give an introduction to answer set programming
(ASP). Instead, we refer to introductory literature into
ASP, e.g., [9].

A clingo model for the node assignment problem
comprises three parts. First, we define the number of
computing nodes and tasks and their capacities and re-
quirements. For every node, e.g., n2, we use three facts,
where the predicate tcapacity denotes the maximum
number of tasks, and mcapacity the maximum available
memory for the given task.:

node(n2). tcapacity(n2,1). mcapacity(n2,20).

For each task, e.g., t1, we add two facts, where the
predicate memory is for defining the required memory
of the given task to a pre-defined value:

task(t1). memory(t1,30).

Second, we generate all potential solutions. For this
purpose, we introduce a predicate for a node assignment

1See https://potassco.org/about/

of a task. Let us call this predicate select that takes a
task T as the first parameter and node N as the second.
In clingo, the generate part for the node assignment
problem is given as follows:

{ select(T,N) : node(N) } = 1 :- task(T).

This rule generates a grounded predicate that assigns
tasks to each computing node. Obviously, not all as-
signments are correct when considering the constraints.
Hence, in the last part, we formalize the first two con-
straints of the general problem, i.e., Equations 1 and 2,
but not the other Equations 3 and 4. For this purpose, we
introduce a predicate nrTasksAssigned that holds the
number of tasks that are assigned to a particular node and
a predicate memRequired that holds the required mem-
ory for a node considering the assigned tasks. The infor-
mation regarding the predicates can be obtained from the
selected task for a node (select predicate) and the mem-
ory required for a task. For the latter, we introduce the
predicate memory. The predicate nrTasksAssigned
can be formalized in clingo as follows:

nrTasksAssigned(N,M) :-
M = #count {T:select(T,N)},
node(N).

Similar, we can define the memRequired predicate:

memRequired(N,M) :-
M = #sum {NM:select(T,N), memory(T,NM)},
node(N).

Using these predicates, we can formulate the con-
straints:

:- nrTasksAssigned(N,M), tcapacity(N,C), M>C.
:- memRequired(N,M), mcapacity(N,C), M > C.

The first constraint states that it is impossible to as-
sign more tasks to a node than the node can hold. The
second constraint states that the memory requirements
of all tasks should not exceed the memory capacity of
the computing node.

3. Experimental evaluation
The following experimental evaluation aims to investi-
gate the runtime behavior for finding one solution of the
task to computation node assignment problem using the
ASP solver clingo. In particular, we are interested in
the number of nodes that can be handled requiring less
than a fixed boundary of time, e.g., 0.01 or 0.1 seconds.
In the following, we outline the experimental setup and
present and discuss the obtained results.
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Figure 1: Solving runtime of consistent instances

Experimental setup: To develop several instances of
the task assignment problem, we wrote a Java program
for generating such instances automatically. We ranged
the number of nodes from 5 to 100. The number of tasks
for each instance was randomly chosen between the num-
ber of nodes and double the number of nodes. The ca-
pacity of each node was randomly set from 1,2, . . . , 10.
The memory provided by each node was randomly cho-
sen from 20, 40, 60,. . . , 200. The memory required by
every task was randomly set from 10, 20, and 30. With
this setup, we generated only satisfiable instances, i.e.,
problem instances where a solution exists. For a category
of instances comprising 𝑛 nodes, we called the instance
generator 10 times. Finally, we received 200 different
problem instances.

We conducted the experiments using an Apple Mac-
Book Pro, with an Apple M1 CPU comprising 8 cores and
16 GB of main memory, running under macOS Sonoma
Version 14.4.1. For computing solutions, we relied on
clingo version 5.7.1 and applied the standard setup.

Experimental results: After generating the prob-
lem instances, we ran clingo to compute one solu-
tion, i.e., we ran clingo using the prompt clingo
–time-limit=10 –outf=2 for each file. Hence, we
set a time limit of 10 seconds and obtained all results in
JSON format. After analyzing the results for correctness,
we summarized the outcome, i.e., the runtime for each
category of a particular number of nodes. Figure 1 de-
picts the minimum, maximum, and average runtime for
all 10 runs for each category.

We see that when using ASP solving utilizing clingo
we can provide one solution even for larger instances
of 100 computing nodes in a reasonable amount of time.
However, when using the approach during operation, and
especially for systems with harder requirements regard-
ing answering time, e.g., real-time systems, a runtime of
almost 3 seconds might not be feasible. We would like
answers in less than 0.1 or 0.01 seconds for such systems,

which can be achieved for 20 or 13 nodes, respectively.
Motivated by the results, we performed further ex-

periments, considering problems that likely cannot be
solved. Unfortunately, in this case, we often ran into
reaching the solving time limit of 10 seconds, even start-
ing with small examples only considering 5 computing
nodes. Instances with more than 7 nodes that might be
unsatisfiable always reach the 10-second limit. For those
instances where unsatisfiability could be established, the
runtime varies between 0.003 and 6.255 seconds. The
latter was obtained for a problem instance comprising
7 computing nodes. Hence, unsatisfiable instances can
hardly be identified when considering more computing
nodes, which might also be an issue for practical applica-
tions.

We carried out another experiment to tackle the men-
tioned problem of potential unsatisfiability. We selected
3 problem instances for which we could not compute
a result. Two instances had 7 nodes, and one had 15
nodes. For these problem instances, we added further
constraints that cover Equations 3 and 4. For all three
clingo files that correspond to the problem instances,
we added the following code:

totalCapacity(C) :- C=#sum{T:tcapacity(N,T)}.
totalMemReq(C) :- C=#sum{M:memory(T,M)}.
totalMem(C) :- C=#sum{N:mcapacity(CN,N)}.
:- totalCapacity(C), C < 21.
:- totalMemReq(Ctask), totalMem(Cnode),

Ctask > Cnode.

Note that the 21 in the above code represents the num-
ber of tasks2. We adapted this value for each instance
and set it to 21, 28, and 60 respectively. When running
clingo on the three files, we obtained an immediate
response of unsatisfiability. In all cases, this response
was less than 0.025 seconds. Hence, adding further con-
straints that allow distinguishing satisfiable from unsat-
isfiable cases as early as possible solves the problem.

In summary, clingo allows for fast computation of
solutions if they exist. The reasoning for the mentioned
tasks-to-computing-nodes assignment problem is fast
enough for at least smaller examples to ensure a timely
response. However, whether this is good enough depends
on the application domain. The challenges we obtained in
the case of unsatisfiability can be solved by setting a time
limit for clingo and introducing additional constraints.
Results from this case study may also apply to other
configuration problems.

Threats to validity: There are many threats to valid-
ity worth mentioning. The experimental evaluation is
2The number of tasks for a particular problem instance can also
be obtained using clingo. The command #count{T:task(T)}
delivers this number. However, we set the number manually for
the three experiments.
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limited in the number of problem instances. There might
be satisfiable instances that may take longer than re-
ported for a given number of computing nodes. However,
we do not expect a very large deviation from the results.
Furthermore, we only considered one rather simple con-
figuration problem. In case of more complex problems,
we expect different runtimes. Nevertheless, the effect of
adding constraints to determine unsatisfiability as early
as possible should still be visible. This might also hold
for the observation that unsatisfiability might be hard
to identify and, therefore, require more computing time.
We carried out all experiments using clingo’s standard-
setting. There might be differences to observe when
changing parameters and setup. There might also be
differences when considering other versions of clingo,
the hardware, or the operating system. Finally, the repre-
sentation of the problem in clingo might also influence
the performance.

4. Conclusions
In this paper, we used the configuration problem of as-
signing tasks to computing nodes to answer whether
answer-set programming is feasible for practical appli-
cations. For smaller problem instances, answer set pro-
gramming might be feasible, providing a fast response
within a fraction of a second. For larger instances, we
may not be able to provide a solution within a reasonable
answer time. Furthermore, we identified a challenge, i.e.,
the extended runtime required for providing an answer
in case of unsatisfiability, and a solution, i.e., the effect of
additional constraints on reducing the runtime. In future
research, we want to extend the configuration problem to
capture the case of task assignments for computing net-
works at runtime. For this purpose, we want to formulate
a corresponding re-configuration problem. Furthermore,
we want to extend the experimental evaluation using
more example instances and additional constraints and
consider computing optimal solutions concerning a given
optimization criteria, e.g., using the least number of com-
puting nodes.
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Abstract
Configuration systems play an important role in achieving the sustainable development goals (SDGs) defined by the United Nations. As
decision support systems, configurators help users to decide which components or features to include in or exclude from a configuration.
An important task of configurators is the provision of explanations which help to achieve goals such as increasing configuration
understandability, increasing a user’s trust, and persuading users/customers to include specific configuration components. Our goal in
this paper is to introduce the concept of „sustainability-aware explanations“ which can help to support the sustainable development goals.
The type of explanations we propose in this context are somehow orthogonal to typical explanations used in industrial configuration
environments. A major objective in this context is to follow a „less-is-more“ principle focusing on different aspects of the idea of
„responsible configuration“ which refers to configuration techniques explicitly supporting the mentioned sustainability goals. We report
the initial results of an evaluation that provide insights on potential impacts of the proposed explanations.

Keywords
Explanations, Sustainability, Green Configuration, Responsible Configuration, Configuration for Good, Nudging, Persuasion, Knowledge-
based Configuration

1. Introduction
The 17 sustainable development goals (SDGs) defined by
the United Nations (UN) provide a blueprint for peace and
prosperity on our planet.1 Examples of such goals are
good health and well-being (e.g., in terms of fostering the
consumption of healthy food), responsible consumption and
production (e.g., in terms of reduced energy consumption),
and sustainable cities and communities (e.g., in the context
of tourism, avoiding negative environmental impacts and
taking into account the local communities and cultural
heritage) [1].

Knowledge-based configuration [2, 3, 4, 5] can be
regarded as a core-technology of mass customization
[6]. On the basis of configurators, users are enabled to
design a product in an individualized fashion that fits
their wishes and needs. In configuration settings, we
can observe an ever-increasing demand for taking into
account sustainability aspects [7, 8]. Following the basic
definition of „configuration“ given by Sabin and Weigel [3],
i.e., „configuration is a special case of design activity where
the configured artifact is assembled from a fixed set of well-
defined component types and components are interacting in
predefined ways“, we define „responsible configuration“ as
„configuration which takes into account the United Nation’s
sustainable development goals“.

In knowledge-based systems, explanations can be applied
for different purposes [9]. First, so-called why explanations
[10, 11, 12] focus on the aspect of mentioning the most
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relevant user requirements that lead to the determination of
a specific configuration. Furthermore, why not explanations
focus on supporting users in situations where no solution
can be identified [13, 14, 15]. From the application point
of view, explanations can be applied to achieve different
goals [16].2 Examples thereof are efficiency (reducing the
time that is needed to complete a configuration task),
persuasiveness (convincing users to change their component
selection behavior), transparency (making the inclusion or
exclusion of specific components transparent to the user),
trust (increasing a user’s confidence in the configuration
system), scrutability (making it possible for the user to
adapt the configurator behavior, e.g., in terms of the used
component inclusion/exclusion strategy), and satisfaction
(e.g., increasing the usability of a configuration system).
These goals must be regarded as examples – for related
details we refer to [11, 16, 17, 18].

In this paper, we focus on the persuasion aspect of
explanations [19]. More precisely, we analyze possibilities
to formulate explanations in such a way that users are
nudged towards more sustainability-aware configuration
decisions. Following a „less-is-more“ principle, we show
how to formulate explanations following Cialdini’s six
principles of persuasion [20] (see Table 1).

Sustainability-aware explanations have to focus on
argumentations including sustainability aspects. Our
formulation of such explanations is based on large
language model (LLM) prompts [21] which help to
associate sustainable development goals with the mentioned
persuasive principles. For example, in the context of
car configuration, explanations could refer to the positive
environmental aspects of purchasing smaller cars or on the
advantages of electric vehicles compared to gasoline-driven
ones.

Positive impacts of such sustainability-aware
explanations can be, for example, higher-quality
configuration decisions, a lower amount of unneeded
components, and components with less negative

2The categorizations of [11, 16] have been developed in the context of
recommender systems but can also be applied in configuration contexts.
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Table 1
Cialdini’s principles of persuasion [20].

principle semantics

reciprocity
feeling of an obligation to give something

back

scarcity
reduced item availability increases

preparedness to purchase

authority
experts have an increased influence on

users
commitment

and
consistency

users prefer to be consistent with their
articulated preferences

liking
users like to comply with other users who

are similar to themselves

social proof
users follow the opinions (of a

representative set) of other users

environmental impacts [8]. From a commercial point of
view, such explanations might appear – at least to some
extent – counterproductive due to potential consequences
in terms of decreasing turnovers. Thus, sustainability-
aware explanations are often in contrast to explanations in
mainstream configuration environments which focus on
increasing sales rates in most of the cases.

The contributions of this paper are the following. First,
we propose the concept of sustainability-aware explanations
for configurations. Second, we provide reference examples
of such explanations in the automotive domain. Third, we
present initial results of a corresponding evaluation.

The remainder of this paper is organized as follows. In
Section 2, we provide different examples of LLM-generated
sustainability-aware explanations in the car configuration
domain. Thereafter, we discuss initial results of a related
evaluation (Section 3). In Section 4, we discuss threats to
validity. Finally, we conclude the paper with Section 5.

2. Sustainability-Aware Explanations
with LLMs

In the following, we discuss scenarios where sustainability-
aware explanations can have an impact on user decisions.
All scenarios are related to car configuration where users
receive explanations of current configurations. The major
goal of such explanations is to make users think about their
current configuration settings and to potentially adapt their
articulated preferences. Consequently, our explanations are
not in the line of why or why not explanations but focus
more on indicating potential alternatives to the current
configuration, i.e., a kind of why not choose something else
explanation. All example explanations in this paper have
been generated on the basis of the LLM ChatGPT 3.5.3

Scenario 1: SUV vs. smaller car. The idea is to make
persons (configurator users) who intend to purchase an
SUV more aware of sustainability aspects of smaller cars.
To support this, we have generated LLM-based explanations
using the following (example) LLM prompt: Assume the
following scenario: person A wants to purchase a car and is
interested in an SUV. Please provide persuasive explanations
against purchasing an SUV following the six persuasion
principles of Cialdini. The resulting explanations are
depicted in Table 2.

3https://chat.openai.com

Scenario 2: Long vs. standard range battery. The idea
is to make configurator users interested in purchasing a car
with a long-range battery aware of the sustainability aspects
of standard-range batteries. To support such explanations,
we have generated LLM-based explanations using the
following LLM prompt: person A wants to purchase an
electric car and is interested in a long-range battery. Please
provide persuasive arguments against purchasing a long range
battery following the six persuasion principles of Cialdini.
The corresponding LLM-generated sustainability-aware
explanations are depicted in Table 3.

Scenario 3: Car not needed in city center.
Configurator users should think about the advantages of
not having a car when living in the city center. We have
generated related LLM-based persuasive explanations
using the following LLM prompt: person A who lives
directly in the city center with various connections to public
transportation wants to purchase a car. Please provide
persuasive arguments against purchasing a car following
the six persuasion principles of Cialdini. The corresponding
sustainability-aware explanations are depicted in Table 4.

Scenario 4: Less costly car due to financial situation.
The idea is making configurator users with limited financial
resources intending to purchase an expensive car to
change their mind and purchase a less expensive car.
To support such explanations, we have generated LLM-
based explanations using the following (example) LLM
prompt formulation: person A with very limited financial
resources and a family with three children wants to purchase
an expensive car. Please provide persuasive arguments
against purchasing an expensive car following the six
persuasion principles of Cialdini. The related LLM-generated
explanations are depicted in Table 5.

3. Evaluation
Properties of LLM-based explanations. In Table 6,
we summarize the different argumentation lines generated
by the large language model (LLM). (1) In the context
of the persuasion dimension reciprocity, LLM-generated
explanations refer to the aspect of „giving something
back to the community“, for example, purchasing an
eco-friendly vehicle can be a way of giving back to the
environment. (2) Explanations related to the persuasion
dimension scarcity on the one hand refer to decreasing
incentives for sustainable equipment (e.g., cars), on the
other hand to limited resources (e.g., financial resources).
(3) In the context of the persuasion dimension authority,
different experts such as environmental experts are used as
representatives of authorities. (4) Explanations related to
the persuasion dimension commitment assume an existing
commitment of the current user, for example, already proved
in previous configuration sessions. (5) In the context of the
persuasion dimension liking, LLM-generated explanations
refer to a user’s family, friends, and neighbors (e.g., your
family will like your decision). (6) Explanations related to
the persuasion dimension social proof refer to trends of
peers, the wider community, and similar families.

LLM-based impact estimates. Using the LLM prompt
which of these explanations would have the highest persuasive
impact on a user? Please provide a ranking., we asked the
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Table 2
Sustainability-aware explanations related to the aspect of purchasing a smaller car compared to an SUV.

principle LLM explanation

reciprocity
Consider the environmental impact and how it affects everyone. Choosing a more eco-friendly vehicle can

be your way of giving back to the community and environment. Others will likely appreciate and
reciprocate your thoughtful decision, fostering a positive cycle of environmentally conscious choices.

commitment
and
consistency

You’ve always been committed to sustainability and reducing your carbon footprint. Opting for an SUV
contradicts these values due to its higher emissions and fuel consumption. Staying consistent with your

commitment to the environment means choosing a more fuel-efficient and eco-friendly car.

social proof
Look at the growing trend among your peers and the wider community towards hybrid and electric vehicles.

Many people are switching to these options because they are better for the environment and more
economical in the long run. Following this trend shows you’re in tune with progressive, responsible choices.

authority
Environmental experts and automotive industry leaders are advocating for smaller, more efficient vehicles to
combat climate change and reduce pollution. Following the guidance of these authorities can help you make

a well-informed decision that aligns with expert recommendations.

liking
Your friends and family who care about the environment will appreciate and support your choice of a more
sustainable vehicle. This decision can strengthen your relationships, as they see you aligning your actions

with shared values and concerns.

scarcity
With increasing regulations and shifts towards renewable energy, fuel-efficient and eco-friendly vehicles

may soon become the norm, potentially leading to fewer incentives for traditional gas-guzzling SUVs. Take
advantage of the current incentives for hybrid or electric vehicles before they become more scarce.

Table 3
Sustainability-aware explanations related to the aspect of purchasing a standard compared to a long-range battery.

principle LLM explanation

reciprocity

Think about the balance between what you get and what you give. By opting for a standard-range battery,
you’re reducing the environmental impact associated with producing larger batteries. This considerate

choice benefits the community and environment, and others may appreciate your mindful decision, leading
them to reciprocate with similar sustainable choices.

commitment
and
consistency

You’ve been committed to reducing your carbon footprint and promoting sustainability. A standard-range
battery is more aligned with these values, as it requires fewer resources to produce and has a lower

environmental impact. Staying consistent with your commitment to sustainability means choosing the
option that minimizes ecological harm.

social proof

Many environmentally conscious drivers are opting for electric vehicles with standard-range batteries
because they strike a good balance between range and environmental impact. By choosing a standard-range
battery, you’re aligning with a growing community of eco-friendly drivers who prioritize sustainability over

convenience.

authority

Experts in environmental science and sustainable technology often highlight the advantages of smaller,
more efficient batteries. They point out that while long-range batteries offer more convenience, the

production and disposal of larger batteries have a higher environmental cost. Following the advice of these
authorities can help you make a more environmentally responsible decision.

liking
Your friends and family who are also concerned about environmental issues will likely appreciate your

choice of a standard-range battery. This decision can enhance your relationships as they see you making
sacrifices for the greater good and staying true to your shared values.

scarcity

As technology advances, the efficiency of electric vehicle batteries is continually improving. Standard-range
batteries are becoming more capable, offering longer ranges and better performance. By choosing a

standard-range battery now, you can take advantage of current technologies and innovations without
feeling the pressure to invest in a long-range battery that may soon become less necessary.

LLM also for a ranking of the impact of the generated
explanations following the idea of LLM self-evaluation
[22]. In most settings, the dimensions authority and
commitment & consistency have been regarded as the two
most impactful persuasion dimensions (see Table 7). The
related LLM-based argument is that the latter appeals
directly to a person’s desire to act in accordance with their
past beliefs and statements and the former has a high impact
specifically in scenarios where the underlying topic involves
technical details. Finally, the dimension of social proof can
be impactful in situations where social trends and peer
behaviors impact decisions.

Feedback of study participants. For a very first
evaluation beyond the LLM feedback, we conducted a small
user study in our research group with N=10 participants
(computer science students at our university). The
participants were asked to rank the different explanations
according to their potential persuasive impact. The results
are included in Table 7. Overall, there exists an overlap

between the explanations ranked highest by the LLM and
those selected by the study participants. In this context,
the authority principle has been regarded as relevant in all
example configuration scenarios. This initial result indicates
basic LLM capabilities to recommend persuasion strategies.

4. Threats to Validity
The explanation concepts presented in this paper are based
on one selected configuration scenario (car configuration).
These explanations are just high-level examples and many
further (also more detailed ones) can be envisioned for
car configuration (e.g., the sustainability aspects of a less
powerful car engine) and beyond. In our work, we did not
focus on a specific phase of a configuration process, i.e.,
the mentioned explanations could even be used before the
configuration process has been started (e.g., as explanations
in wish lists or product information). Gaining more
related insights is a major focus of our future research.
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Table 4
Sustainability-aware explanations related to the aspect of waiving a car in the city center.

principle LLM explanation

reciprocity

Consider how much the city has invested in developing a robust public transportation system. By
using these resources instead of buying a car, you show appreciation and reciprocate the city’s

efforts to provide efficient and sustainable transportation options. This can inspire others to also
rely on public transport, enhancing the community’s collective effort to reduce traffic and

pollution.

commitment
and
consistency

You’ve always been committed to living a minimalist and environmentally friendly lifestyle.
Owning a car might contradict these values, adding unnecessary expenses and contributing to
urban pollution. Staying consistent with your principles means continuing to use the excellent

public transportation available to you.

social proof

Many city dwellers are moving away from car ownership in favor of public transportation, biking,
and walking. This trend reflects a growing recognition of the benefits of car-free living in urban
areas. By following this trend, you align yourself with a progressive community that prioritizes

sustainability and efficient urban living.

authority

Urban planning experts and environmental authorities advocate for reduced car usage in city
centers to decrease congestion and pollution. By heeding their advice and utilizing public

transport, you’re supporting proven strategies that improve city life and contribute to a healthier
environment.

liking

Your friends and neighbors who also rely on public transportation will likely appreciate and
support your decision to avoid car ownership. This shared experience can strengthen your bonds
with those around you, as you collectively benefit from less traffic, cleaner air, and a more vibrant

urban community.

scarcity

Parking spaces and road capacity in the city center are limited resources. By not purchasing a car,
you’re helping to reduce the demand for these scarce resources, making the urban environment

more livable for everyone. Additionally, public transport allows you to avoid the hassle and
expense associated with finding and paying for parking.

Table 5
Sustainability-aware explanations related to the aspect of purchasing an affordable car.

principle LLM explanation

reciprocity

Think about the support you’ve received from friends, family, and community during tough
financial times. By opting for a more affordable car, you demonstrate financial responsibility
and can reciprocate their support by being in a better position to help others when they need

it.

commitment
and
consistency

You’ve always been committed to providing the best for your family while managing your
limited financial resources wisely. Purchasing an expensive car contradicts this commitment
and could put unnecessary financial strain on your household. Staying consistent with your

goal of financial stability means choosing a car that fits within your budget.

social proof

Many families in similar financial situations prioritize practicality and affordability when it
comes to transportation. By choosing a more economical vehicle, you’re following a proven

path that many others have taken to ensure they can meet their family’s needs without
financial stress.

authority

Financial advisors and experts consistently recommend living within your means and avoiding
large, unnecessary expenses, especially when money is tight. By following this expert advice,
you’re making a prudent decision that aligns with sound financial practices and secures your

family’s financial future.

liking
Your friends and family will likely admire and respect your decision to prioritize your family’s
well-being over the allure of an expensive car. Making a practical choice shows that you value

their advice and shared values of financial prudence and responsibility.

scarcity

Financial resources are currently scarce for your family. By not purchasing an expensive car,
you conserve these limited resources for more critical needs like education, healthcare, and

everyday living expenses. This ensures that you have the financial flexibility to handle
unexpected costs and opportunities that arise.

The presented impact ranking of explanations has been
primarily discussed on the basis of an LLM-generated
ranking [22] including corresponding argumentations that
help to understand the proposed ranking. More detailed
studies with real users (and more detailed related preference
and context information) are planned within the scope of
future work also to better understand the limitations of
LLMs with regard to the recommendation of persuasion
strategies. Up to now, no LLM-related hallucination effects
could be observed, however, this is an important aspect to
be taken into account in future work. A recently mentioned
new persuasion principle (identification) [23] will be taken
into account in future studies. Finally, more detailed
LLM prompts better taking into account the context (and

preferences) of the current user are regarded as an important
topic of future work.

5. Conclusions
In this paper, we have introduced the concept of
sustainability-aware explanations of configurations. Using
the example of car configuration, we have explained
and exemplified this type of explanation. Following
a set of persuasion dimensions, we have analyzed the
LLM-generated explanations with regard to the used
argumentation lines and analyzed the impact of the
generated explanations on the user. In this context, LLMs
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Table 6
LLM-based argumentation lines for Cialdini’s principles of
persuasion[20].

principle argumentation line

reciprocity
giving something back to the

community and the environment

scarcity
fewer incentives for sustainable

equipment, limited available
financial resources

authority
environmental experts, urban

planning experts, financial
advisors

commitment
and

consistency

existing commitment to
sustainability in the past

liking family, friends, neighbors

social proof
trends of peers, wider

community, and similar families

Table 7
Scenario-dependent preferred explanations (top-2 LLM and study
participant-preferred explanations).

scenario top-2 (LLM) top-2 (study
participants)

SUV vs.
smaller car

(1) commitment &
consistency,
(2) authority

(1) authority,
(2) liking

Long vs.
standard

range battery

(1) authority,
(2) commitment &

consistency

(1) authority,
(2) social proof

Car not
needed in city

center

(1) social proof,
(2) authority

(1) authority,
(2) reciprocity

Less costly
car due to
financial
situation

(1) authority,
(2) commitment &

consistency

(1) authority,
(2) commitment &

consistency

show to be applicable in terms of generating explanations
in a flexible fashion but also to recommend explanations in
specific configuration contexts. Our future work will include
detailed studies with real users with the goal to compare
LLM-based rankings with the perception of explanations
by real users. Further research will include an analysis
of the effects of combining explanations (e.g., integrating
authority-based with commitment-based explanations).
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Abstract
Large and globally operating enterprises can be confronted with situations where local variability models representing the
constraints of individual countries and markets have to be integrated to support a centralized variability management. For
example, a car producer operating in the U.S. as well as the European market, could be interested in having a centralized
variability (feature) model representing the variability spaces of all supported markets. To achieve this goal, existing local
feature models and the corresponding knowledge bases have to be integrated in such a way that the configuration spaces
remain the same, for example, for the European market, we would request to support exactly the same set of car configurations
that are supported by the corresponding local feature model. In this paper, we introduce an algorithmic approach that
supports the merging of feature models in such a way that the semantics of the original feature models is preserved. We
present our algorithm and the results of a solver performance analysis which has been conducted on the basis of real-world
feature models.

Keywords
Variability Modeling, Feature Models, Model Merging, Redundancy Elimination, Configuration

1. Introduction
Feature models (FMs) are an intuitive way of represent-
ing commonality and variability properties of complex
systems [1, 2, 3]. Specifically, in scenarios where com-
panies are operating on a global basis, integration sce-
narios can arise where country or region-specific feature
models have to be integrated to support a more glob-
alized variability management. Think about a scenario
where a car producer operating in the European and
the US market decides to centralize variability manage-
ment activities. On the technical (feature model) level,
formerly region- or country-specific models have to be
integrated in a systematic fashion in one centralized vari-
ability model. In this paper, we present an algorithmic
approach to integrate (merge) two different (“old”) feature
models (e.g., the feature model 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 could denote a
local feature model of a US car provider) in a semantics-
preserving way where the solution (configuration) spaces
of the local feature models are “transferred” to an in-
tegrated feature model which reflects exactly the same
set of solutions: solutions(𝐹𝑀𝑈𝑆𝑜𝑙𝑑)∪ solutions(𝐹𝑀𝐸𝑈𝑜𝑙𝑑)
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equals solutions(𝐹𝑀𝑛𝑒𝑤). In this context, we assume that
𝐹𝑀𝑈𝑆𝑜𝑙𝑑 and 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 represent the local feature models
of a globally operating car manufacturer and 𝐹𝑀𝑛𝑒𝑤 is the
result of merging the local feature models (and related
knowledge bases).

Knowledge base merging has been approached in var-
ious ways. For example, the alignment of knowledge
bases is based on the idea of knowledge base integra-
tion by identifying concepts in different knowledge bases
that represent the same underlying concept but are rep-
resented by different names. Knowledge base alignment
is specifically performed in situations where numerous
knowledge bases have to be integrated [4]. Knowledge
base merging is based on a set of predefined merging
operations [5, 6], for example, consistency-based merg-
ing follows the goal of deriving a maximally consistent
set of logical formulae that represent the union of the
formulae of the original knowledge bases. Such integra-
tions basically follow the idea of generating maximally
satisfiable subsets (of rules) [7], i.e., sets that cannot be
further extended (with original rules) without making
the resulting knowledge base inconsistent.

Feature model merging [8, 9, 10, 11, 12, 13] is also in the
line of the ideas of the previously mentioned approaches.
Feature models can become quite large and complex [14],
which makes the development and maintenance of sin-
gle models a challenging task. Following the idea of
separation of concerns [15], Aydin et al. [16] propose
an approach to construct stakeholder-individual feature
models which are then merged for the purpose of provid-
ing a unified view on the feature space. In the context
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Figure 1: Example basic feature model from the automotive domain where type refers to the car type which can be (lim)ousine,
(com)bi, (cit)y, and suv. Furthermore, the car color can be (b)lack or (w)hite, the engine can be 1l, 1.5l, and 2l. Fuel can be
(d)iesel, (e)lectric, (g)asoline, and (h)ybrid, representing the supported types of fuel. Finally, a coupling unit is regarded as an
optional feature.

of such a merging process, different “issues” have to be
resolved, for example, some stakeholders regard a feature
as optional while others think it should be mandatory.
Furthermore, depending on the given scenario, feature
naming can also become an issue if no “maximum fea-
ture set” has been specified ahead of the merging process.
For such scenarios, Aydin et al. [16] propose a standard
merging procedure that is able to generate a reference
feature model, which then serves as a basis for further
discussions and decision-making.
With a similar motivation, i.e., making large feature

model development easier, Acher et al. [8], propose a
set of integration operations for “local” feature models
which basically support the goal of integrating local mod-
els into a global one. In this context, the authors also
specify feature model relationships on a logical basis,
for example, one feature model 𝐹𝑀1 is the specializa-
tion of a feature model 𝐹𝑀2 if the configuration space
of 𝐹𝑀1 is a subset of the configuration space of 𝐹𝑀2
– see also Thüm et al. [17, 3]. The authors also intro-
duce a merge operation where the introduced semantics
does not support semantics preservation but requires
that the result of the merging operation is equivalent
or a superset of the solution (configuration) spaces of
the two original feature models, i.e., solutions(𝐹𝑀1) ∪
solutions(𝐹𝑀2) ⊆ solutions(merge(𝐹𝑀1, 𝐹𝑀2)). Such a
semantics of a merge operation is also considered in the
contributions of Broek et al. [10], Carbonell et al. [11],
and She et al. [18].
Following the union merge semantics introduced

in Schobbens et al. [12], the feature model merg-
ing approach presented in this paper focuses on the
preservation of the semantics of the source feature
models used as an input for the merging procedure.
In other words, it supports a semantics-preserving
merging where the configuration space of the feature
model resulting from a merging operation is exactly
the union of the configuration spaces of the original
feature models: solutions(𝐹𝑀1) ∪ solutions(𝐹𝑀2) =
solutions(merge(𝐹𝑀1, 𝐹𝑀2)) which is more restrictive

compared to the union semantics introduced by Acher
et al. [8].

Compared to related work on feature model semantics
preservation [10, 13], our approach provides a generaliza-
tion in terms of (1) supporting arbitrary constraint types
(in contrast to specific feature model related constraints
such as requires and incompatible) and (2) taking into
account redundancy-freeness in terms of assuring that
redundant constraints as a result of a merging procedure
can be detected and eliminated from the feature model. In
our approach, the original feature models and the result-
ing feature model (result of the merging operation) are
represented as constraint satisfaction problems (CSPs)
[19]. To demonstrate the applicability of our approach,
we present the results of a corresponding performance
analysis.
The remainder of this paper is structured as follows.

In Section 2, we introduce a working example consisting
of simplified feature models from the automotive domain.
Using this example, we discuss our algorithmic approach
to semantics-preserving feature model merging in Sec-
tion 3. To show the performance of our approach, we
report the results of a corresponding performance evalu-
ation (see Section 4). Finally, we conclude the paper with
a discussion of existing threats to validity (Section 5) and
a corresponding summary of the contributions of this
paper (Section 6).

2. Example Scenario
Wenow introduce a simplified example of a featuremodel
merging scenario. Our basic underlying assumption is
that the original feature models are consistent, i.e., it
is possible that at least one solution can be identified
and also that the feature set of the original models are
the same, i.e., the differences are primarily observable in
terms of the constraints defined in the individual mod-
els. In our example from the automotive domain, the
original feature models are denoted as 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 (the orig-
inal US feature model) and 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 which denotes the
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original European Union feature model. In this context,
we assume that these feature models are consistent, i.e.,
non-void [20], meaning that at least one configuration
can be identified for each of those models. Finally, we
denote the resulting model (the merging result) as 𝐹𝑀𝑛𝑒𝑤.
Figure 1 represents the basic feature model (i.e., con-

figuration model [21]) that in the following will be used
as a working example. This feature model represents all
relevant features that can be used to define variability
knowledge, i.e., we assume that the same set of features
is used to represent variability knowledge in 𝐹𝑀𝐸𝑈𝑜𝑙𝑑
and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑. Differences in the two variability models
can exist in terms of constraints representing individual
configuration spaces. In the following, we specify con-
straints that define the properties of the two original fea-
ture models 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 represented in terms
of individual constraint satisfaction problems (CSPs) rep-
resenting the European and the US feature model [19].1

These CSPs are defined in terms of variables with corre-
sponding domain definitions (e.g., type(lim,com,sit,suv)
denotes the variable type with the allowed values) and a
corresponding set of constraints [22].

Note that region is an additional variable representing
a contextual information, i.e., to which region a gener-
ated configuration belongs to. Contexts follow the idea
of separation of concerns [15] which supports a kind of
decentralized modeling [23]. For example, using the con-
text variable region, the constraint 𝑐1𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 ≠ ℎ would
be expressed as 𝑐1𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → 𝑓 𝑢𝑒𝑙 ≠ ℎ explicitly
indicating that this constraint has to hold for configura-
tions generated on the basis of the 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 CSP.

• 𝐹𝑀𝑈𝑆𝑜𝑙𝑑: {region(US), type(lim,com,cit,suv),
color(b,w), engine(1l, 1.5l, 2l), fuel(d, e,
g, h), coupling(yes,no), 𝑐1𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 ≠ ℎ,
𝑐2𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝑛𝑜,
𝑐3𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑐𝑜𝑙𝑜𝑟 = 𝑏}

• 𝐹𝑀𝐸𝑈𝑜𝑙𝑑: {region(EU), type(lim,com,cit,suv),
color(b,w), engine(1l, 1.5l, 2l), fuel(d, e,
g, h), coupling(yes,no), 𝑐1𝑒𝑢 ∶ 𝑓 𝑢𝑒𝑙 ≠ 𝑔,
𝑐2𝑒𝑢 ∶ 𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝑛𝑜,
𝑐3𝑒𝑢 ∶ 𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑡𝑦𝑝𝑒 ≠ 𝑐𝑖𝑡}

To show the differences between the feature models
𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑, Table 1 provides an overview of
the number of solutions supported by the original (region-
specific) feature models.

3. Merging Feature Models
In order to be able to merge the two original feature mod-
els (𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑) in a semantics-preserving

1The feature name abbreviations of 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 are defined
in Figure 1.

Table 1
Number of consistent solutions (configurations) related to the
original and contextualized feature models.

Feature model #configurations

𝐹𝑀𝐸𝑈𝑜𝑙𝑑 108
𝐹𝑀𝑈𝑆𝑜𝑙𝑑 96

𝐹𝑀 ′ = 𝐹𝑀𝐸𝑈 ′
𝑜𝑙𝑑 ∪ 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑 204

𝐹𝑀𝐸𝑈 ′
𝑜𝑙𝑑 ∩ 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑 84

fashion, each constraint of the two original feature mod-
els (represented as CSPs) has to be contextualized using
the context variable region.2 Assuming the two regions
European Union and US, our context variable could be
defined as region(𝐸𝑈,𝑈 𝑆) denoting the variable region
with the allowed values {𝐸𝑈 , 𝑈 𝑆}. More precisely, each
constraint 𝑐[𝑖]𝑒𝑢 (𝑐[𝑖]𝑢𝑠) of the “EU” (“US”) CSP (derived
from the 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 (𝐹𝑀𝑈𝑆𝑜𝑙𝑑) feature model) has to be
translated into a contextualized representation – see the
following example: 𝑐1𝑒𝑢 ∶ 𝑓 𝑢𝑒𝑙 ≠ 𝑔 would be translated
into a corresponding contextualized form 𝑐1𝑒𝑢′ ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 =
𝐸𝑈 → (𝑓 𝑢𝑒𝑙 ≠ 𝑔). The resulting contextualized variants
of the original knowledge bases 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑
are denoted as 𝐹𝑀𝐸𝑈 ′

𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑.

• 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑: {region(US), type(lim,com,cit,suv),
color(b,w), engine(1l, 1.5l, 2l), fuel(d, e, g, h), cou-
pling(yes,no), 𝑐′1𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 ≠ ℎ),
𝑐′2𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 =
𝑛𝑜), 𝑐′3𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑐𝑜𝑙𝑜𝑟 =
𝑏)}

• 𝐹𝑀𝐸𝑈 ′
𝑜𝑙𝑑: {region(EU), type(lim,com,cit,suv),

color(b,w), engine(1l, 1.5l, 2l), fuel(d, e, g, h), cou-
pling(yes,no), 𝑐′1𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 ≠ 𝑔),
𝑐′2𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 =
𝑛𝑜), 𝑐′3𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑡𝑦𝑝𝑒 ≠
𝑐𝑖𝑡)}

Note that the solution (configuration) spaces of the
contextualized feature models 𝐹𝑀𝐸𝑈 ′

𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑
are the same as those of the original ones (assum-
ing a corresponding context setting, e.g., 𝑟𝑒𝑔𝑖𝑜𝑛 =
𝐸𝑈). Following this argumentation, solutions(𝐹𝑀𝐸𝑈𝑜𝑙𝑑) ∪
solutions(𝐹𝑀𝑈𝑆𝑜𝑙𝑑) = solutions(𝐹𝑀𝐸𝑈 ′

𝑜𝑙𝑑 ∪ 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑)
which supports our goal of achieving a semantics-
preserving merging of the original knowledge bases (see
Table 1).

The algorithmic approach to support such a semantics-
preserving merging is shown in Algorithm 1 (MergeFM)
which itself is a Flama [24] prototype implementation. In
a first step (starting with line 6 of MergeFM), those con-
straints in the contextualized original knowledge bases

2In general, contexts can be represented by a set of variables (i.e.,
not necessarily one).
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(in Algorithm 1 denoted as 𝐹𝑀′
1 and 𝐹𝑀′

2) can be decon-
textualized where such a contextualization is not needed
(𝑐 is a decontextualized version of 𝑐′): if ¬𝑐 is consistent
with 𝐹𝑀′

1 ∪ 𝐹𝑀′
2, there (obviously) exist solutions sup-

porting ¬𝑐. In such a case, the constraint 𝑐must be added
in a contextualized fashion to the resulting knowledge
base 𝐹𝑀, since some feature model configuration (in the
other knowledge base) supports ¬𝑐. If ¬𝑐 is inconsistent
with 𝐹𝑀′

1 ∪ 𝐹𝑀′
2 , 𝑐 can be added in decontextualized fash-

ion to the resulting knowledge base 𝐹𝑀. In a second step
(starting with line 14 of Algorithm 1), each constraint of
the resulting knowledge base has to be checked for redun-
dancy: in a logical sense, a constraint 𝑐 can be regarded as
redundant if 𝐹𝑀−{𝑐} is inconsistent with ¬𝑐whichmeans
that the constraint does not reduce the solution space of
FM and thus logically follows from the constraints in FM
(and can be deleted from the constraints in FM).

Algorithm 1MergeFM(𝐹𝑀′
1 , 𝐹𝑀′

2)∶ 𝐹𝑀
1: {𝐹𝑀′

1 , 𝐹𝑀′
2: two contextualized and consistent fea-

ture models}
2: {𝑐′: constraint c in contextualized form}
3: {𝐹𝑀: feature model as a result of MergeFM}
4: 𝐹𝑀 ← {};
5: 𝐹𝑀′ ← 𝐹𝑀′

1 ∪ 𝐹𝑀′
2;

6: for all 𝑐′ ∈ 𝐹𝑀′ do
7: if 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡({¬𝑐} ∪ 𝐹𝑀′ ∪ 𝐹𝑀) then
8: 𝐹𝑀 ← 𝐹𝑀 ∪ {𝑐};
9: else
10: 𝐹𝑀 ← 𝐹𝑀 ∪ {𝑐′};
11: end if
12: 𝐹𝑀′ ← 𝐹𝑀′ − {𝑐′};
13: end for
14: for all 𝑐 ∈ 𝐹𝑀 do
15: if 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡((𝐹𝑀 − {𝑐}) ∪ {¬𝑐}) then
16: 𝐹𝑀 ← 𝐹𝑀 − {𝑐};
17: end if
18: end for
19: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑀;

When applying Algorithm 1 to 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 and 𝐹𝑀𝐸𝑈𝑜𝑙𝑑,
the resulting knowledge base 𝐹𝑀𝑛𝑒𝑤 looks like as follows.
In the resulting knowledge base, the constraint 𝑐′2𝑢𝑠 has
been decontextualized. Also, as a result of applying Al-
gorithm 1, constraint 𝑐′2𝑒𝑢 can be regarded as redundant
and thus can be deleted from 𝐹𝑀𝑛𝑒𝑤.3

• 𝐹𝑀𝑛𝑒𝑤: {region(US,EU), type(lim,com,cit,suv),
color(b,w), engine(1l, 1.5l, 2l), fuel(d, e, g, h), cou-
pling(yes,no), 𝑐′1𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 ≠ ℎ),
𝑐′2𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝑛𝑜, 𝑐′3𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 =

3Alternatively, 𝑐′2𝑢𝑠 could be deleted as a redundant constraint (instead
of 𝑐′2𝑒𝑢).

𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑐𝑜𝑙𝑜𝑟 = 𝑏), 𝑐′1𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 =
𝐸𝑈 → (𝑓 𝑢𝑒𝑙 ≠ 𝑔), 𝑐′3𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 =
𝑑 → 𝑡𝑦𝑝𝑒 ≠ 𝑐𝑖𝑡)}

On the algorithmic level, the resulting knowledge base
𝐹𝑀𝑛𝑒𝑤 is represented in terms of a constraint satisfaction
problem. One possibility of representing the integrated
knowledge base as the resulting integrated feature model
is depicted in Figure 2.

4. Performance Evaluation
In this section, we discuss the results of an initial perfor-
mance analysis we have conducted to evaluate MergeFM
(Algorithm 1) 4. For this analysis, we applied 8 real-world
variability models with varying sizes collected from the
S.P.L.O.T. feature model repository [25] and the Diverso
Lab’s benchmark5 [26]. Table 4 shows the characteristics
of these models (denoted as 𝜙). In order to generate “to-
be-merged” feature models (𝐹𝑀′

1 and 𝐹𝑀′
2) with differ-

ent shares of contextualized constraints from individual
𝜙s, we determined the needed number of relationships
or cross-tree constraints. We then modified these se-
lected relationships/cross-tree constraints by changing
their type, for example, changing mandatory to optional,
changing alternative to or, or changing requires to ex-
cludes. The resulting models (𝐹𝑀′

1 ∪ 𝐹𝑀′
2 = 𝐹𝑀′) are

represented as constraint satisfaction problems [19] that
differ individually in terms of the number of constraints
(#constraints) and the degree of contextualization (ex-
pressed as percentages in Tables 2 and 3). In order to
take into account deviations in time measurements, we
repeated each experimental setting 10 times where in
each repetition cycle the constraints in the individual
(contextualized) knowledge bases 𝐹𝑀′ were ordered ran-
domly. All analyses have been conducted with an Apple
M1 Pro (8 cores) computer with 16-GB RAM. For evalu-
ation purposes, we used the Choco solver6 to perform
the needed consistency checks.
The number of consistency checks needed for decon-

textualization is linear in terms of the number of con-
straints in 𝐹𝑀′. A performance evaluation of MergeFM
with different knowledge base sizes and degrees of con-
textualized constraints in 𝐹𝑀 is depicted in Table 2. In
MergeFM, the runtime (measured in terms of millisec-
onds needed by the constraint solver7 to find a solution)
increases with the number of constraints in 𝐹𝑀′ and de-
creases with the number of contextualized constraints in

4The dataset, the implementation of algorithms, and evaluation pro-
grams can be found at https://github.com/AIG-ist-tugraz/FMMerging.

5https://github.com/flamapy/benchmarking
6choco-solver.org
7For the purposes of our evaluation we generated variability models
represented as constraint satisfaction problems formulated using
the Choco constraint solver – www.choco-solver.org.
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Figure 2: Example integrated feature model derived from 𝐹𝑀𝑛𝑒𝑤. This model includes contextual information (the region)
represented as feature(s). Simple contextualized constraints such as 𝑐′1𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 ≠ ℎ) are translated directly
into a corresponding feature model constraint (as excludes relationship), for the representation of more complex constraints
such as 𝑐′3𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑡𝑦𝑝𝑒 ≠ 𝑐), the corresponding feature model constraint is textually annotated with
the context information (e.g., region=EU). This graphical representation of contexts in feature models follows the idea of
contextual diagrams as introduced by Felfernig et. al [23].

Table 2
Avg. runtime (in seconds) of MergeFM measured with different configuration knowledge base sizes (of 𝐹𝑀 ′

1 and 𝐹𝑀 ′
2) and

shares of related contextualized constraints (10-50% contextualization).

feature model (𝜙) #constraints(𝜙) 10% 20% 30% 40% 50%

IDE 13 0.008 0.007 0.007 0.006 0.006
Arcade 66 0.060 0.056 0.054 0.052 0.054
FQA 101 2.560 2.341 2.794 2.812 3.684
Invest 233 3.018 3.860 4.879 5.781 5.915
Win8 405 154.825 171.516 165.988 158.998 149.323
EMB 1,029 1,621 1,361 1,138 1,043 972
EA 2,670 3,810 3,870 3,899 4,023 4,032

Linux 13,972 45,641 52,711 47,516 56,536 57,034

Table 3
Avg. runtime (msec) of the merged configuration knowledge bases (𝐹𝑀) to calculate a configuration measured with different
knowledge base sizes (of 𝐹𝑀) and shares of contextualized constraints in 𝐹𝑀 (10-50% contextualization).

feature model (𝜙) #constraints(𝜙) 10% 20% 30% 40% 50%

IDE 13 0.050 0.042 0.039 0.037 0.037
Arcade 66 0.069 0.057 0.060 0.053 0.055
FQA 101 0.072 0.069 0.071 0.072 0.079
Invest 233 4.755 2.992 2.742 2.346 2.293
Win8 405 3.832 4.058 5.385 4.695 4.413
EMB 1,029 22.034 24.190 25.029 25.603 26.980
EA 2,670 40.501 41.227 43.741 45.311 51.483

Linux 13,972 143.698 199.822 143.756 159.515 112.986

Table 4
Feature models used for MergeFM evaluation (IDE=IDE product line, Arcade=Arcade Game PL, FQA=Feature model for
Functional Quality Attributes, Invest=Feature model for Decision-making for Investments on Enterprise Information Systems,
Win8=Accessibility options provided by Windows 8 OS, EMB=EMB Toolkit, EA=EA 2468, Linux=Linux kernel version 2.6.33.3).

feature model (𝜙) IDE Arcade FQA Invest Win8 EMB EA Linux

#features 14 61 178 366 451 1,179 1,408 6,467
#hierarchical constraints 11 32 92 41 267 862 1,389 6,322
#cross-tree constraints 2 34 9 192 138 167 1,281 7,650
#CSP constraints 13 66 101 233 405 1,029 2,670 13,972
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𝐹𝑀. The increase in efficiency can be explained by the
fact that a higher degree of contextualization includes
more situations where the inconsistency check in Line
7 (Algorithm 1) terminates earlier (a solution has been
found) compared to situations where no solution could
be found. In addition, Table 3 indicates that the perfor-
mance of solution search does not differ depending on the
degree of contextualization in the resulting knowledge
base 𝐹𝑀.
Consequently, integrating individual variability mod-

els can trigger the following improvements. (1) De-
contextualization in 𝐹𝑀 can lead to less cognitive efforts
when adapting / extending knowledge bases (due to a
potentially lower number of constraints [27] and a lower
degree of contextualization). (2) Reducing the overall
number of constraints in 𝐹𝑀 can also improve runtime
performance of the resulting integrated knowledge base.

5. Threats to Validity
We are aware that our evaluation is in fact based on
real-world feature models, however, synthesized vari-
ants thereof have been used for MergeFM evaluation
purposes. Furthermore, our approach is based on the
assumption that the “to-be-merged” feature models have
the same set of features, i.e., we assume feature equiv-
alence. In this context, we assume that in real-world
scenarios further streamlining tasks (e.g., feature name
alignment) have to be completed before MergeFM can be
activated. Our basic assumption behind redundancy elim-
ination and de-contextualization in MergeFM is that the
understandability and maintainability of feature mod-
els can be improved – although already confirmed by
related work [27], further research is needed to better un-
derstand major impact factors that make feature models
(and underlying knowledge bases) easier to understand
and maintainable.

6. Conclusions and Future Work
In this paper, we have introduced an approach to the
consistency-based merging of variability models repre-
sented as constraint satisfaction problems. The approach
helps to build semantics-preserving feature models in the
sense that the solution spaces of the resulting knowledge
bases (result of the merging process) correspond to the
union of the solution spaces of the original knowledge
bases. Such an approach can be useful in the mentioned
integration scenario but as well in situations where differ-
ent parts (representing different contexts) of a knowledge
are developed in a de-centralized fashion and integrated
thereafter. Besides the preservation of the original se-
mantics, our approach also helps to make the resulting

knowledge base compact in the sense of deleting redun-
dant constraints and not needed contextual information.
The runtime performance of our approach is shown on
the basis of a first performance analysis with real-world
feature models. Future work will include the evaluation
of our concepts with further knowledge bases and the
development of alternative merging algorithms with the
goal to further improve runtime performance. Further-
more, we will evaluate different alternative feature model
representations that help to represent contextualized con-
straints – one such representation has been discussed in
this paper.
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Abstract
One of the core goals in the research field of configuration space learning is building precise predictive models that allow
for reliably estimating the performance of a configuration without requiring costly tests. The models used for this purpose
are usually machine learning-based. However, the models show significant deviations in their performance depending on
the investigated Software Product Line (SPL), the applied data preprocessing, and the number of sample configurations
collected. Thus, we investigate the impact of different preprocessing methods and their behavior when using different SPLs,
machine learning models, and sample sizes. Performance comparisons on this scale are usually not conducted due to their
prohibitively expensive execution time requirements, even for smaller SPLs. Thus, we used three fully enumerated spaces as
our training data, which allows for more generalized results. Our results show that the average factors between the worst and
best-performing preprocessing methods are 2.05 (BerkeleyDBC), 1.17 (7z), and 1.84 (VP9). Further, no single preprocessing
method tested was able to outperform all others, nor was this the case within one specific SPL or model type. This underlines
the importance of testing new approaches with multiple preprocessing methods.

Keywords
Configuration Space Learning, Machine Learning, Preprocessing

1. Introduction
The discovery of configurations that optimize the perfor-
mance of any given Software Product Line (SPL) is one
of the core goals of configuration space learning. The
performance of a model can take many forms and rely
heavily on the use case. For instance, one may optimize a
SPL to perform a core task very efficiently or optimize for
the size of the compiled SPL binary. This optimization
usually takes place in steps. The first step is sampling
configurations from the configuration space of the SPL
and measuring the target property, which often entails
compiling and running tests or benchmarks, a very time
and resource-intensive undertaking. One can use these
samples to train a prediction model, which is then used
to find a configuration that optimizes the target property.
In this paper, we focus on the creation and training of
the prediction model. Many factors can impact the per-
formance of a performance prediction model for SPLs,
from the SPL itself to the sampling approach used to col-
lect the training data. However, our focus lies on one
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of the factors often neglected in SPL performance pre-
diction: Preprocessing. We will define any necessary
terms used in this paper in Section 2. Preprocessing has
proven itself inmany other domains that employmachine
learning-based prediction models. However, literature
reviews such as Gong and Chen [1] show that less than
half of the investigated studies within the field of config-
uration performance learning use preprocessing, further
discussed in Section 3. Accordingly, we thus conduct an
in-depth investigation on the influence of preprocessing
on performance prediction models for SPLs. To this end,
we measure the performance of 4 preprocessing methods
in the context of 3 SPLs, 5 machine learning models, and
20 different sizes of training sets. We discuss the details
of the experimental evaluation in Section 4, followed by
a discussion of the results in Section 5.

2. Definitions
Software Product Line (SPL). SPLs, as a concept started
to gain widespread popularity at the beginning of the
2000s [2]. Engström and Runeson [3] describe SPLs as
the paradigm of forming derivate products from a set of
generic components. A SPL has multiple features, each
supporting an individual domain of values, which allows
for the generation of diverse products using the same
components.
Configuration. In the context of a SPL, a configuration
defines for each feature the corresponding feature value.
However, there may exist additional constraints within
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the SPL. Thus, we speak of a valid configuration if none
of the assigned values is inconsistent with any of the
constraints.
Configuration Space. The configuration space of a SPL
describes the space spanned by all valid configurations
of the SPL. The size of configuration spaces commonly
grows exponentially with the number of features, and we
speak of colossal configuration spaces if its size is≫ 1010
[4].

3. Related Work
The three fully enumerated configuration spaces pro-
vided by Oh et al.[4] facilitate the comprehensive perfor-
mance analysis and comparison we conducted. They use
them to show that relatively simple approaches like uni-
form random sampling can outperform well-established
tools like SPL Conquerer [5] to find near-optimal configu-
rations for SPLs. We build on this idea and conduct a com-
parison of different preprocessing methods. The reason-
ing behind conducting this comparison is the alarming
result of Gong and Chen [1]. They performed a literature
review on deep configuration performance learning and
reported that 44 out of 85 investigated studies used the
data as it was without any preprocessing. This limited
utilization implies a lack of awareness of the impact of
preprocessing methods. This lack of awareness may then
aggravate the difficulty of reproducing and validating
the results of published works. Dacrema et al. [6], for
example, investigated 18 new approaches published re-
cently, of which they could only reproduce 7. Of the 7
reproduced approaches, they showed that they can out-
perform 6 by using relatively simple other approaches.
The importance of preprocessing methods in many do-
mains has long since been established. Wu et al.[7], for
example, shows that preprocessing improves the perfor-
mance of streamflow forecasts. Rasekhi et al. [8] report
improvements in the prediction of epileptic seizures by
using preprocessing.
We further include in our tests different sample sizes,
which allows us to investigate the reaction of the pre-
processing methods to changing sample sizes. Acher et
al.[9] sampled and measured 95854 Linux configurations,
a minute fraction of the configuration space of 215000
(2.818 ∗ 104515) configurations spaned by Linux. They re-
ported to have needed 15000 hours of computation time
to collect the samples. Guo et al. [10] uses tree-based
models to predict configuration performances. Martin et
al.[11] focus on using transfer learning across different
versions of the Linux kernel to predict the performances
of the versions. They mention preprocessing only for
encoding configurations into formats compatible with
their machine-learning approach.
The literature reviews of Gong and Chen [1] and Pereira

Name Value
Vendor Lenovo
Product 20N6001GGE
CPU Intel Core i7-8665U (4x 1,90 GHz)
RAM 32GB (DDR4)
OS Manjaro Linux
Kernel version 6.1.80.-1-MANJARO

Table 1
Specifications of the machine used in the experiments

et al. [12] named multiple data sampling approaches
used in configuration performance learning. However,
both identified random sampling as the most popular ap-
proach. Pereira et al. [13] conducted a dedicated study on
sampling approaches for learning configuration spaces.
They suggest using uniform random sampling as long as
it is computationally feasible. Accordingly, we adapted
it for our comparison.

4. Experimental Setup
This section will discuss the exact experimental setup
for data collection and which machine learning models,
preprocessing methods, and datasets we were using. All
measurements were collected using the same machine
with specifications as they are listed in Table 1. We use
Mean Absolute Percentage Error (MAPE) to evaluate the
model performances, which is one of the most commonly
used metrics in literature [1] [12] [13]. The code was im-
plemented in Python using the widely used scikit-learn1

library [14]. We used Uniform Random Sampling (URS)
to generate the training sets of different sizes for model
learning. We can perform URS by selecting configura-
tions randomly from the set of valid configurations. The
size of the training sets range from 50 to 1000 in steps of
50. However, the tests for all models and preprocessing
methods use, within the same iteration, the same training
set of a specific size. After the performance of all models
using the preprocessing applied to the training sets is
measured, these measurements are repeated 15 times,
each time with new training sets selected with URS. The
average of the resulting MAPE values in the 15 iterations
is the value we use when we discuss the results.

4.1. Datasets
For our comparison, we use a dataset of fully enumerated
configuration spaces. Thus, the dataset includes all valid
configurations for a given SPL. In addition, a value, like
execution times of benchmarks or similar, representing
the performance of each configuration was measured.
We use three such datasets based on three configurable

1https://scikit-learn.org/stable/index.html
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software projects: BerkeleyDBC2, 7z3, and VP94. The
datasets are used in the work of Oh et al.[4], and they
were made available in their resources5. Oh et al.[4] pro-
vided the following description of the three datasets.
BerkeleyDBC is an embedded database system with 9

Name Domain
DIAGNOSTIC 0 | 1
HAVE_STATISTICS 0 | 1
HAVE_REPLICATION 0 | 1
HAVE_CRYPTO 0 | 1
HAVE_SEQUENCE 0 | 1
HAVE_VERIFY 0 | 1
HAVE_HASH 0 | 1
CACHESIZE CS16MB | CS32MB |

CS64MB | CS512MB
PAGESIZE PS1K | PS4K | PS8K |

PS16K | PS32K

Table 2
BerkeleyDBC variable names and their respective domains

variables and 2560 configurations. Benchmark response
times were measured. We visualize the variable names
and their domains in Table 2.
7z is a file archiver with 9 variables and 68640 configura-
tions. Compression times were measured. We visualize
the variable names and their domains in Table 3.
VP9 is a video encoder with 12 variables and 216000

configurations. Video encoding times were measured.
We visualize the variable names and their domains in
Table 4.
Although these three configuration spaces do not ap-
proach the sizes of colossal configuration spaces like
Linux, which spans a configuration space with 215000
configurations[9], they still have sizes where an enumer-
ation is no longer an option, and thus fall in the purview
of the research field of configuration space learning. De-
pending on the complexity of the tests and the underlying
system, procuring very few samples may already be very
costly. Acher et al.[9], for example, reported 15000 hours
of computation to build and measure 95854 Linux con-
figurations. We selected these datasets due to two main
advantages. The first is avoiding the extreme compu-
tation times of collecting such data, and the second is
that using them allows us to test multiple iterations of
training sets of different sizes.

4.2. Models
We selected five different types of machine-learning mod-
els, each representing a different general approach to
2https://www.oracle.com/database/technologies/related/berke-
leydb.html

3https://www.7-zip.org/download.html
4https://www.webmproject.org/vp9/
5https://zenodo.org/records/7776627

Name Domain
root 0 | 1
CompressionMethod LZMA | LZMA2 | PPMd |

BZip2 | Deflate
x x_0”, ”x_2 | x_4 | x_6 | x_8

| x_10
BlockSize BlockSize_1”, ”Block-

Size_2 | BlockSize_4
| BlockSize_8 | Block-
Size_16 | BlockSize_32
| BlockSize_64 | Block-
Size_128 | BlockSize_256
| BlockSize_512 | Block-
Size_1024 | Block-
Size_2048 | Block-
Size_4096

Files Files_0 | Files_10 |
Files_20 | Files_30 |
Files_40 | Files_50 |
Files_60 | Files_70 |
Files_80 | Files_90 |
Files_100

tmOff 0 | 1
mtOff 0 | 1
HeaderCompressionOff 0 | 1
filterOff 0 | 1

Table 3
7z variable names and their respective domains

maximize the usefulness of our results. In our implemen-
tations, we used models from the scikit-learn6 python
library [14]. For the sake of reproducibility, we did not
perform any parameter tuning on the models and used
their respective default settings if not explicitly stated
otherwise.
The first model is a Multi-Layer Perceptron (MLP) model,
a feedforward neural network approach. We set the max-
imum of iterations to 1000 and activated early stopping
for our tests. MLPs are, according to Gong and Chen [1],
the most popular approach when conducting deep con-
figuration performance learning. However, it is a very
data-intensive approach that needs comparatively large
training sets to perform well.
The secondmodel is a K-Nearest Neighbors (KNN) model,
a memory-based approach. Themodel finds the k-nearest
neighbors to a configuration from the training set, in our
case the default value 5. The KNN model predicts the
performance of the configuration by calculating the aver-
age of the performances of the configuration’s k nearest
neighbors. In our case, the average was weighted by the
distance between the neighbor and the configuration.
The third model is a Random Forest (RF), an ensemble
method employing several decision trees generated using
the training data to predict the performance of an un-

6https://scikit-learn.org/stable/index.html
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Name Domain
root 0 | 1
lagInFrames lagInFrames_0 | lag-

InFrames_8 | lagIn-
Frames_16

endUsage variableBitrate | constant-
Bitrate | constrainedQual-
ity

AdaptiveQuantizationMode off | variance | complexity
| cyclicRefresh

TileColumns TileColumns_0 |
TileColumns_3 |
TileColumns_6

cpuUsed cpuUsed_0 | cpuUsed_2 |
cpuUsed_4 | cpuUsed_6 |
cpuUsed_8

Threads Threads_2 | Threads_4 |
Threads_6 | Threads_8 |
Threads_10

bitRate bitRate_300 | bitRate_600
| bitRate_900 | bi-
tRate_1200 | bitRate_1500

FrameBoost 0 | 1
lossless 0 | 1
AutoAltRef 0 | 1
Quality good | realtime

Table 4
VP9 variable names and their respective domains

known data point. We use bagged trees, which means we
train all underlying decision trees to solve the problem
using all features. The final result is in the context of
classification decided based on a majority vote. However,
in our context of regression, we calculate the final result
by taking the mean of all results produced by the decision
trees.
The fourth model is a Support Vector Machine (SVM),
a well-established model based on statistical learning
frameworks. We use a radial basis function as our kernel
type.
The final model is an ElasticNet (EN) model, a derivate
of linear regression models. The model combines L1 and
L2 priors as a regularizer.

4.3. Preprocessing
We used several preprocessing methods to test their im-
pact on the different models and training sizes. For the
sake of this comparison, we do not distinguish between
actual preprocessing methods like Standardization and
encodings such as the One Hot Encoding.
The first preprocessing method discussed we call default
(DEF). It provides a baseline for mostly unaltered data
and leaves numeric values untouched. The boolean val-
ues are, however, encoded with 0 and 1 for false and true,
respectively. If all values of a domain can be converted

into numbers this is done (e.g. CS32MB = 32, Table 2).
If this is not possible, the string values are encoded us-
ing label encoding [15, 16], which assigns an increasing
numeric value for each unique string in a domain. This
format is the default state of the data. Thus, we apply all
preprocessing methods mentioned hereafter to the data
in this format.
The second preprocessing method is Min Max Scaling
(MMS) [17, 18], which reduces the scale of a given fea-
ture to be between 0 and 1. We achieve this by applying
Equation 1 on every feature of the configuration, where
min and max are the minimum and maximum recorded
numbers for this feature, respectively. When we apply
this to the features encoded using label encoding, the
result is a derivative of the former called scaled label
encoding [19, 20].

𝑓𝑖(𝑥𝑖) =
𝑥𝑖 − 𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖
(1)

The third preprocessing method is Standardization (STD)
[21, 22], which is achieved by calculating the mean and
standard deviation of each feature and applying Equation
2

𝑓𝑖(𝑥𝑖) =
𝑥𝑖 − 𝜇𝑖
𝜎𝑖

(2)

This results in the mean of every feature in the training
set being now 0 and the standard deviation being 1.
The final preprocessing method is One Hot Encoding
(OHE) [23, 24], which changes the domain of all features
to a boolean domain. We achieve this by increasing the
dimensions of the data by an encoding of the domain.
Thus, if, for example, feature 𝑓 has the domain 0, 6, 12,
it would have been replaced with the features 𝑓0, 𝑓6, 𝑓12
each of the three resulting boolean features are mutu-
ally exclusive and encode one possible value assigned to
feature 𝑓.

5. Results
In this section, we showcase the measurements collected
as described in the experimental setup section and dis-
cuss them. To this end, we will discuss the results of each
dataset separately and what observations we made.
Firstly, we start with a discussion of our smallest SPL,
BerkeleyDBC. All performance results are visualized in
Figure 1. In the results for MLP, we see that OHE is per-
forming best among all preprocessingmethods regardless
of sample size. However, we can also see a shift in the per-
formances of the preprocessing approaches. STD started
as the worst-performing preprocessing method. Despite
that, with increasing sample size, it outperformed MMS
and DEF. Accordingly, the results of STD approached the
results of the best performer OHE for the larger sample
sizes. However, when looking at Figure 2 and Figure
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Figure 1: The performances of each preprocessing method applied to each model and a comparison between the top performers
of each model aplyed to the BerkeleyDBC dataset.

Figure 2: The performances of each preprocessing method applied to each model, and a comparison between the top
performers of each model applied to the 7z dataset.
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Figure 3: The performances of each preprocessing method applied to each model, and a comparison between the top
performers of each model applied to the VP9 dataset.

3, we see that this behavior does not occur in the other
datasets, but, in contrast to other approaches, the results
of STD remain either relatively stable or improve with
increasing sample sizes. We see a similar behavior on a
smaller scale with MMS and DEF. MMS performed ini-
tially worse than DEF, overtaking it as soon as sample
sizes became larger than 200 and achieving similar re-
sults from sample sizes 500 and larger. The other models,
in contrast, showed more pronounced preferences for
preprocessing methods. For the KNN model, DEF was
the best-performing preprocessing method, followed by
STD, MMS, and OHE. RF showed the best performance
of all models with almost indistinguishable differences
of 0.01% between the preprocessing methods on average.
For the SVM model, DEF performed the worst with com-
paratively little improvement with larger sample sizes.
The remaining preprocessing methods, from worst to
best, MMS, STD, and OHE show relatively similar re-
sults, improving with increasing sample sizes. For the
EN model, OHE performs best, and the remaining three,
from worst to best, MMS, DEF, and STD show relatively
similar results. The sample size has a comparatively small
impact on the performances. Results with sample sizes
of 200 and larger only show a minor oscillation and re-
main otherwise stable. The comparison between models
shows that RF outperforms the other models. All models

except for EN show significantly better performances
with larger sample sizes. However, MLP was impacted
the most by the sample size. It overtook the performance
of SVM at a sample size of 450 and EN at 900.
Secondly, we will discuss the next larger SPL, 7z. We
provide the results for this dataset in Figure 2. The first
observation we can make is that the overall quality of
the predicted results decreased. This matches our ex-
pectations, since we are predicting the performance of a
larger SPL using an equivalent setup. Another observa-
tion we can make is that three of the five tested models
showed strong oscillations in their performances or, for
some preprocessing methods, a worsening of the perfor-
mance with increasing sample size. The MLP model, for
example, showed for the best and second best performing
preprocessing methods, MMS and STD, respectively, no
significant changes with increasing sample sizes. DEF
and OHE showed meanwhile a decrease in performance
with increasing sample sizes. The EN and SVM models
showed strong oscillations with increasing sample sizes.
However, the performances of the preprocessing meth-
ods all follow that same pattern, which suggests that the
cause for this may lie in the model or the SPL rather than
the preprocessing approaches. In the case of the SVM, the
performances remained very similar. The preprocessing
performances in the ENmodel follow the same oscillation
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Model Preprocessing BerkeleyDBC 7z VP9
MLP DEF 25.68% 114.76% 273.94%
MLP MMS 26.29% 99.97% 144.24%
MLP STD 31.12% 99.98% 129.80%
MLP OHE 10.27% 104.41% 117.11%
KNN DEF 1.44% 119.01% 182.27%
KNN MMS 4.29% 82.30% 158.79%
KNN STD 2.85% 78.42% 124.31%
KNN OHE 4.47% 79.99% 241.55%
RF DEF 0.54% 9.51% 15.14%
RF MMS 0.55% 9.54% 14.97%
RF STD 0.55% 9.50% 15.23%
RF OHE 0.54% 10.82% 18.32%
SVM DEF 6.44% 91.46% 249.59%
SVM MMS 6.07% 91.33% 101.45%
SVM STD 6.04% 91.29% 100.35%
SVM OHE 6.03% 91.36% 116.08%
EN DEF 5.19% 176.36% 246.24%
EN MMS 5.31% 177.54% 273.19%
EN STD 5.09% 169.40% 267.77%
EN OHE 2.54% 173.59% 226.60%

Table 5
Average MAPE value over all tested sample sizes from 50 to 1000 with steps of 50

pattern while being displaced with a relatively constant
margin along the y-axis, with STD performing best. The
KNN model performed as expected, showing constant
improvements with increasing sample sizes for all pre-
processing methods. However, it is notable that the best
performer on the BerkelyDBC dataset DEF performs the
worst now, with the former second-best performing STD
taking its place as the best performer. The RF model re-
mains again the best performer with a significant margin.
The preprocessing performances are again very similar,
but STD performs significantly better for the smallest
tested sample size, thus outperforming the others.
Thirdly, we will discuss the largest SPL we investigated,
VP9. The results collected for VP9 are shown in Figure 3.
Our first observation is that the results for VP9 are closer
to the results from BerkeleyDBC. There are again some
oscillations in the results of MLP, but they are compara-
tively minor and show a clear trend to improvement with
increasing sample sizes. We see again that the perfor-
mance of the EN model remains unaffected by increasing
sample sizes, except for some minor oscillations. The
SVM model shows a similar pattern as it did with the
BerkeleyDBC dataset. The DEF preprocessing method
performs once more the worst and shows as the only
method with no significant improvement with increas-
ing sample size. KNN shows to be once more consistent,
showing stable improvement with increasing sample size,
STD performing best once more. The RF model performs
once more best by a significant margin. The preprocess-
ing methods have little impact on its performance, but
some improve the prediction performance earlier, the

best performing being MMS.
Finally, we will discuss the results and our observations
in general. To this end, we provide the average perfor-
mances of all models and preprocessing approaches in
Table 5. The first observation must be that preprocessing
methods have a significant impact on the prediction per-
formances. BerkeleyDBC has an average factor of 2.05
between the best and worst-performing preprocessing
methods. In comparison, 7z and VP9 have an average fac-
tor of 1.17 and 1.84 respectively. This observation holds
for all tested models, even for the best-performer RF.
However, RF shows this impact only with the larger SPLs
like 7z and VP9. In general, the differences are maximized
at low sample sizes and become then smaller with increas-
ing sample sizes. We observe a similar situation with the
SVM model, except DEF, which was largely unsuited.
DEF was in two out of three tested SPLs performing the
worst, showing insignificant improvement with increas-
ing sample sizes. For MLP, KNN, and EN, on the other
hand, we can see significant performance differences
on every sample size tested, with, in general, more pro-
nounced differences when applying smaller sample sizes.
We also observe multiple occasions where misrepresen-
tation of performances could occur when conducting
tests with only one preprocessing method. For instance,
one can conclude that SVMs outperform MLPs on the
BerkeleyDBC dataset for sample sizes smaller or equal
to 1000 when conducting tests only with DEF or MMS.
However, when testing with STD or OHE, we see that
MLP outperforms SVMs on the BerkeleyDBC dataset for
sample sizes greater than 650 or 400, respectively. From
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this, we conclude that a sound comparison between two
or more predictive models should compare their perfor-
mances when using their best-performing preprocessing
methods. Omitting the preprocessing method used may,
by extension, lead to poorly reproducible results.
MLP showed to work on average best with OHE. The
performance of this model strongly correlated with the
sample size, and it usually started with comparatively
high MAPE scores that became more competitive with
increasing sample sizes. Furthermore, it is prone to os-
cillation. KNN showed to work on average best with
STD. It was one of the most stable and robust models,
achieving constant improvement with increasing sample
sizes, even in the context of SPLs like 7z that triggered
oscillation in most other models. However, its prediction
quality places it in the middle field. RF showed to work
on average best with MMS. This model outperformed
every other model significantly in every aspect we mea-
sured. Its worst performance using the smallest tested
sample size of 50 outperforms, in all but two cases, the
best performances of all other models. This performance
is then improved further with increasing sample size. The
model usually reaches a plateau relatively early on aver-
age at a sample size of 350, after which its improvement
slows significantly. SVM showed to work on average
best with STD. The model improves like RF on average
with a sample size up to 600 steadily, after which the
model starts to plateau in its improvement, except for the
already mentioned DEF. EN showed to work on average
best with OHE. This model showed, on average, com-
paratively minor improvements with increased sample
size.

6. Threats to validity
This paper compared multiple machine learning-based
models and explicitly did not perform any parameter tun-
ing for any one of the models. We used, if not stated
explicitly differently, always the default parameters de-
fined by the scikit-learn7 library [14]. Thus, we must
acknowledge that fine-tuning the model parameters, es-
pecially for the more complex models like MLP, likely
will improve the performances of the models employed.
However, the measured results are still valid and valuable
for comparing the model performances concerning the
preprocessing methods and the sizes of the training sets
employed.

7. Conclusion
We tested 15 scenarios of machine learning-based per-
formance prediction in the context of SPLs by measur-

7https://scikit-learn.org/stable/index.html

ing the performance of five different machine learning
models on three SPLs with training sets of increasing
sizes. Except for two, all scenarios tested showed, in part,
radical changes in prediction quality depending on the
preprocessing method used. These changes were most
pronounced when we measured the model performances
with only a few samples to use as training sets and be-
came less distinctive with training sets of increased size.
On average, the disparity between the worst and the
best performing preprocessing method were factors of
2.05 (BerkeleyDBC), 1.17 (7z), and 1.84 (VP9). While we
identified the on average best performing preprocessing
methods for each model we tested, we also see, as visu-
alized in Table 5, that no single method outperforms all
others for each dataset, which holds as well if we only
focus on a single model. Thus, having shown both the
significant impact and the inconsistency in the perfor-
mance of preprocessing methods, we draw the following
conclusions. Results that do not state which, if any, pre-
processing method was employed become hard to repro-
duce. Further, the disregard of preprocessing methods
may pose a threat to the validity of results. In summary,
preprocessing methods are a high-impact, low-effort, and
inconsistent part of the field of SPL performance predic-
tion, and all these properties make them essential to be
considered and tested.
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Abstract
Constraint Satisfaction Problems (CSPs) are a core technology that solves many real-world problems, especially for configu-
ration tasks. A key success factor in this context is an efficient knowledge acquisition process where domain experts and
knowledge engineers (developers of CSPs) should develop an agreement on the correctness of the expanding knowledge base
as soon as possible. In this paper, we show how large language models (LLMs) can be applied to the automated generation of
solutions for constraint satisfaction problems thus reducing overheads related to CSP development and maintenance in the
future.
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1. Introduction
Knowledge acquisition for knowledge-based systems, es-
pecially constraint-based systems, is a complex task. It
includes the formalization of partly tangible knowledge
with a knowledge model, such as a configuration, con-
straint, or feature model [1, 2]. Constrained-based sys-
tems, in particular, are often used to implement configu-
ration systems, due to their ability to compute possible
values for configurations or even directly configurations
themselves [3]. Hence, modeling a configuration prob-
lem as a constraint satisfaction problem (CSP) is a typical
approach for computing configurations. This type of
modeling is similar to developing programs in a high-
level programming language but also incorporates logical
semantic elements.

Currently in software engineering, the use of large
language models (LLMs) is exploited to support program-
mers in their daily tasks, such as coding, code comple-
tion, reviewing code, API programming, generating test
cases, documentation, or identifying design patterns as
well as learning programming languages or understand-
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ing legacy code [4]. This is achieved through general
LLMs such as ChatGPT1 or specific ones like for cod-
ing trained LLMs such as CoPilot2, or software agents
like CREWAI3 and AutoGenStudio4, or software assisting
engineers such as Devine AI5 or its open source corre-
spondent Devika6.

An example of developing a small game with a graph-
ical user interface is GPT-Engineer7, which prompts in
natural languages and provides the game logic and the
graphical interface through HTML and CSS coding. Es-
pecially the combination of an LLM with a compiler or
interpreter in a chain leads to a self-evaluation where
a code, which is generated code by an LLM, is directly
checked through the interpreter, and the resulting er-
ror message is taken as the next prompt for the LLM.
Through iterating this (e.g., with a supporting tool such
as LangCHAIN8) a syntactically correct program is cre-
ated. However, broader tasks, such as reviewing a soft-
ware architecture or refactoring code distributed over
multiple files are hindered by the limited size of a prompt
(the context window) to a given number of tokens such
as 128, 000 input tokens for GPT-4. In summary, apply-
ing LLMs to software development still has to cope with
issues such as limited context windows, maintainability

1Chat Generative Pre-Trained Transformer
2https://github.com/features/copilot. All URLs accessed in May 2024
3https://www.crewai.com/
4https://microsoft.github.io/autogen/blog/2023/12/01/
AutoGenStudio

5https://preview.devin.ai/
6https://github.com/stitionai/devika
7https://github.com/gpt-engineer-org/gpt-engineer
8https://python.langchain.com/docs/get_started/introduction
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of AI-created code, and applicability in project planning
or software architecture.

Inspired by these approaches, for constraint satisfac-
tion problems the following questions arise:

• Which knowledge acquisition and engineering
tasks can be supported by LLMs?

• Can knowledge models be generated by LLMs?
How is quality ensured?

• Which alternative implementations of a knowl-
edge model are the most comprehensible or main-
tainable?

However, a main ingredient of LLMs is of course a
prompt that triggers the generation of text, here of knowl-
edge models. Hence, for a knowledge model, the ques-
tions are also:

• What type of prompts do we need?
• What has to be presented to the LLM?
• Is natural language text describing the problem

enough?
• Should examples of the formal modeling lan-

guage, which shall be used for formalization, be
given?

• Or the complete language specification?

This paper explores the innovative use of LLMs to
automatically generate constraint models in constraint
programming languages like PyChoco9. Constraint pro-
gramming involves defining problems in terms of vari-
ables, related variable domains, and constraints that must
be satisfied. Popular problems in this domain include, e.g.,
the N-queens problem, Magic Square, Map Coloring, and
the Traveling Salesperson Problem (TSP). To tackle such
problems, we propose a generalized approach (Section
3) where an LLM is leveraged to generate a constraint
model based on a provided prompt.

We test our approach based on several constraint sat-
isfaction problem examples (Section 4). In this paper, we
mainly concentrate on known examples from the con-
straint community given by well-known descriptions,
not that much on new examples formulated in natural
language. Although the task of starting with known prob-
lems is untypical for configuration problems, in our view,
this step is necessary for exploring the possibilities of
LLMs for knowledge modeling in general. This approach
of using commonly known constraint and configuration
problems builds a baseline for further work.

With our proposed approach, we aim to streamline the
process of model creation in constraint programming,
making it faster and more accessible by harnessing the
capabilities of LLMs. The main idea is to define a general
prompt once which describes the problem context and

9https://pypi.org/project/pychoco/

then reuse this general prompt for specific knowledge
engineering tasks at hand.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the state-of-the-art in
LLM-based knowledge modeling. In Section 3, we sketch
our proposed LLM-based CSP generation approach. In
Section 4, we provide details regarding the LLM prompt-
ing approach based on different example CSP tasks. A
discussion (Section 5) and a conclusion (Section 6) ends
the paper.

2. State of the Art in LLMs and
Knowledge Modeling

Many real-world problems can be interpreted as con-
straint satisfaction problems (CSPs). Knowledge engi-
neers have the task of formalizing domain-specific con-
straints into corresponding constraint-based represen-
tations. This formalization step is often effortful and
more assistance and automation are required in the mod-
eling process which can be regarded as a major challenge
for constraint-based systems [5]. Due to recent develop-
ments in the area of large language models (LLMs), we
could envision agent-based approaches that support the
(semi-)automated generation of CSPs [6]. In the follow-
ing, we discuss related work on the application of LLMs
to knowledge modeling.

The idea of exploiting synergy potentials of
knowledge-based systems and language models for
knowledge-base generation has been proposed a.o. by
Petroni et al. [7], Ding et al. [8], and Razniewski et al. [9].
Suchanek and Luu [10] motivate the integration of LLMs
with data-driven and knowledge-based approaches to
exploit the advantages of both worlds, specifically, to
let data-driven approaches act as a basis for grounding
the LLM output in reality. In the work presented in our
paper, a simple form of grounding is the usage of test
cases to assure intended CSP semantics. A similar line of
research is presented in Nayak and Timmapathini [11]
where object and relation identification based on LLMs
is investigated.

Ahmed and Choudhury [12] introduce the idea of ap-
plying LLMs to the generation of optimization problems.
The motivation behind this is to make related problem
formulation tasks more accessible to domain experts, i.e.,
to decrease the need for specialized mathematical knowl-
edge to make problem formulations feasible. Based on
a given dataset comprising different example problem
definitions (and solutions), LLMs are used to generate op-
timization problem definitions for new problems defined
in a textual fashion. A major difference compared to our
work is that model fine-tuning is primarily based on a
"human in the loop" approach whereas we focus more
on automated fine-tuning giving LLM feedback on the
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syntactical (is the generated CSP correct or what were
the compilation issues?) and the semantic level with test
cases. A related approach is the application of LLMs
to support different types of strategic reasoning tasks,
for example, in the context of economic simulations and
game theory [13].

A very similar approach provides [14]. This ‘Program
of Thoughts’ named approach also combines an LLM
with an external Python interpreter, however, in [14] for
computing numerical problems. Furthermore, the verifi-
cation of the generated Python program is not discussed.

The adaptation of LLMs for logical reasoning tasks [15]
can be performed either based on LLM fine-tuning where
LLMs are trained (and adapted) for specific problem set-
tings [16] or based on (automated) prompt adaptation
[17]. Intending to improve the quality of code generation,
Pan et al. [15] follow the idea of using constraint (and
SAT) solver execution errors as feedback channels (in the
prompting process) to increase the quality of code gen-
eration. The feedback approach presented in our paper
extends the work of Pan et al. [15] in terms of addition-
ally providing test cases that help to improve the quality
of the generated CSP also on the semantic level.

In [18], various prompts are used to create source code
with built-in variability. Specific prompts enable the gen-
eration of code in different programming languages, al-
lowing for application configuration. However, a human
developer would execute these prompts, no iterative pro-
cess ensures the correctness of the resulting code.

The automated generation of CSPs can also be re-
garded as a specific type of ontology construction where
concept hierarchies are derived based on different LLM
prompts representing concept hierarchy-specific queries
(see, for example, the work of Funk et al. [19]). An exam-
ple of such a query is the following: What are all of the
most important subcategories of the category A?

3. Methodology
Our approach for generating constraint models using
LLMs is a structured, iterative process designed to create
syntactically and semantically (almost) correct models.
This begins by defining a general LLM prompt that can
encompass the varying specifics of different constraint
problems. For instance, the prompt can be tailored to a
specific constraint problem but always solicits a PyChoco
interpreter that solves the problem.

The process, furthermore, involves using an iterative
loop where the LLM generates a constraint model based
on the provided prompt. This generated model is then
verified through a constraint interpreter or compiler. If
the syntax of the model is incorrect, the result of the
Python interpreter call is automatically taken as a prompt
for a next iteration and the model is adjusted by the LLM

and the process repeats. This loop continues until the
syntax is correct.

Once a syntactically correct model is produced, the
next step is to verify its semantics. This is done by run-
ning a series of test cases specific to the problem domain.
Successful completion of test cases indicates a correct
semantic implementation (at least concerning the test
cases).

This approach, thus, executes an iterative prompting
of an LLM, where only a human user provides the first
prompt, while the results of a Python interpreter are
automatically used by the LLM as successive prompts. A
complete example of such an iterative dialog including
in-between generated answers of the LLM (”Assistant”)
is presented in the Appendix Section 2.

This methodology can be further detailed through the
following steps:

Leveraging Existing Knowledge Problems: To cre-
ate useful constraint models, we use logical problems
that are well understood and documented on the internet.
Examples include classic problems such as the N-queens
problem, Map Coloring, or the Traveling Salesperson
Problem. These problems are selected due to their well-
known constraints and solution strategies.

Integration with Constraint Solvers: Once the log-
ical problems are defined, we connect these models to a
constraint system, here PyChoco - other suitable solvers
could be used. This involves mapping the logical prob-
lem’s constraints to the syntax and structures of the cho-
sen constraint language and, thus, facilitating automated
solving.

Syntax Verification Loop: An iterative process is set
up where the LLM generates a constraint model based
on the initial prompt. This model is then verified for
syntactic correctness using the constraint interpreter or
compiler. If errors are identified, the prompt is automat-
ically adjusted by the LLM, by using an error message
as a next prompt and the LLM regenerates the model.
This loop continues until a syntactically correct model is
achieved.

Semantic Verification with Test Cases: After
achieving a syntactically correct model, the focus shifts
to ensure semantic correctness. This involves introduc-
ing test cases specific to the defined problem. The LLM-
generated model runs through these test cases to ver-
ify that it not only adheres to syntactic rules but also
correctly implements the problem’s logic. Iteration con-
tinues until the model passes all semantic verification
tests.

Generalizability: The ultimate goal of our approach
is to establish a generalizable method for generating con-
straint models using LLMs. By systematically using an
iterative loop for both syntactic and semantic verification
that employs examples and logical problem definitions,
we aim to create a robust framework that can be adapted
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tool Python_REPL, description: A Python shell. Use this to run and verify your solution to the constraint problem.
Input should be a valid Python script using pychoco. The last line should be "verify_solutions(solutions, ...)" in order
to verify your solutions
System:
You are an agent designed to solve constraint problems, you write python code to solve and verify constraint problems.
You have access to a python REPL, which you can use to execute python code and verify your solution. If you get an
error, debug your code and try again. You only use the constraint solver pychoco. You conclude your python code
with a variable "solutions" and verify it with the method call "verify_solutions(solutions, <problem_name>", where
<problem_name> is given to you as the first word of the instructions. "solutions" should be a list of all solutions to the
constraint problem. If verification fails, you correct your solution.
Use the following example as a template for solving constraint problems with pychoco:
User: ints10. find numbers one to 10.
Assistant:

‘‘‘python
from pychoco.model import Model
from test_tool import verify_solutions

model = Model()
x = model.intvar(1, 10, "x")

solver = model.get_solver()
solutions = [s.get_int_val(x) for s in solver.find_all_solutions()]
verify_solutions(solutions, "ints10")
‘‘‘

Figure 1: General prompt including an example for the LLM on how to call the verification method. The first three lines (the
tool description) are needed to avoid iterations related to wrongly calling the method verify_solutions (see Appendix
Section 7 for created errors without those lines).

to various constraint languages and problems.
By following these steps, our approach leverages the

capabilities of LLMs to create accurate and efficient con-
straint models, providing a scalable solution for different
problem types.

4. Prompting Constraint Models
We divide prompts into a general part which is used
with each constraint problem, i.e., the system prompt (see
Section 4.1), and a query part which points to a specific
problem (see Section 4.2).

4.1. General Prompts
Prompting Syntactic Valid Models Figure 1 shows the
general prompt which we developed for querying for
constraint solutions. The prompt provides the following
explanations to the LLM:

1. what role it has (“You are an agent. . . “),
2. the explanation of the REPL10 as a tool (“You have

access. . . “),

10Read-Eval-Print-Loop

3. a hint of the behavior of the tool (“The python
REPL. . . “),

4. a hint of how to use the tool (“Use this. . . “),
5. to focus on that tool (“use only“).

Prompting Semantic Verification: To verify, if a
semantic correct solution can be computed with the gen-
erated constraint model, we include a verification scheme
that builds on tests. Those are specific for the constraint
problem at hand. However, the general prompt is en-
hanced with a call to the verification method, which is
parameterized with the name of the constraint problem.
The verification scheme is given by an example that ex-
plains the parameterization, a constraint model, and the
call to the verification method (Figure 1).

Prompt Refinement: For more understanding, of
why the LLM generates a certain code line in the model,
we have enforced the LLM to provide comments above
a code line (see Figure 2). This is done by explaining
in the prompt what a “Good python code example“11 is.
This is done, by repeating this text at various appropriate

11The italic style in the prompt is only for the human reader, i.e.,
only the text is given as prompt.
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You are an agent designed to solve constraint problems, you write and execute python code to answer questions.
You have access to a python REPL, which you can use to execute python code. The python REPL will keep its state
between usage. Use this to gradually approach a final solution. Divide the solution into meaningful parts run them
part after part verifying that each part runs correctly. If you get an error, debug your code and try again only the last
part that failed. You only use the constraint solver pychoco. Only use the output of your code to answer the question.
Write for each code line a comment as needed to justify your reasoning for that code line. I will give you an example
of good python code, please, follow the code convention of the good python code example. This good python code
exampleis only an example. This good python code example has nothing to do with the constraint problem solution.
You might know the answer without running any code, but you should still run the code to get the answer. If it does
not seem like you can write code to answer the question, just return "I don’t know" as the answer. The user may
ask questions or give follow up instructions after you presented your solution. You then have to adjust you solution
accordingly.
good python code example:

"# Import necessary modules
import os

# Define the input and output file paths
input_file_path = \’numbers.txt\’
output_file_path = \’average.txt\’

# Function to read numbers from a file
def read_numbers_from_file(file_path):

# Initialize an empty list to store the numbers
numbers = []
# Open the file in read mode
with open(file_path, \’r\’) as file:

# Read each line in the file
for line in file:

# Strip any leading/trailing whitespace and convert to float
number = float(line.strip())
# Append the number to the list
numbers.append(number)

# Return the list of numbers
return numbers
main()"

Figure 2: Refining the prompt to provide comments for the generated model (slightly differently prompted).

positions in the prompt, as well as providing such an
example in the prompt.

4.2. Prompting Specific Problems
The query part simply consists of the name of the con-
straint problem and related specific problem descriptions,
see Listing 112.

N-Queens Problem
Problem: Positioning n queens with possible movements
known from chess on a𝑛*𝑛 chessboard13. Figure 1 shows
the used prompt.

12The code in the repository contains further problems such as magic
square that lead to similar observations.

13See files “chats/queen8_cs_agent_sol2_gpt-4-1106-preview_*“ in
the repository for results

Results: The LLM makes multiple Python REPL calls,
one that prints the solution, and one that follows the
system prompt on how to verify the solution. This leads
to the correct computation of the model including the
conversion of the solutions to a list of lists (see Figure 3).

Comments: The solution to the N-queens problem is
provided in the PyChoco documentation on the internet,
hence, the LLM was trained with it. However, a different
solution was found. Also, the 3-queen problem which
provides no solution was correctly represented. A further
observation was that the result is not deterministic, e.g., it
varies arithmetical constraints for diagonals (see Listing
2). Fixing the seed and setting the temperature to zero
does not make results deterministic.

The semantic verification test for the N-Queens prob-
lem is shown in Listing 3. Through the method
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Listing 1: Queries for specific constraint problems

queen3 = "solve the 3-queen problem"
queen8 = "solve the 8-queen problem"
queenn = "solve the n-queen problem, use n=8 as test instance"
----------------------------------------------------------------------------
coloring = """
solve the map coloring problem for four regions, three colors and the given adjacency:
regions = [’A’, ’B’, ’C’, ’D’]
adjacency_list = {

’A’: [’B’, ’C’],
’B’: [’A’, ’C’, ’D’],
’C’: [’A’, ’B’, ’D’],
’D’: [’B’, ’C’]

}.
the solution should be a list of python dicts where each dict maps regions to color indices
"""
----------------------------------------------------------------------------
tsp = """solve the traveling salesman problem, use the following problem instance:
# Number of cities
C = 4

# Distance matrix
D = [[0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0]]
the solution should be a list of valid solutions, each solution being a list of integers

representing the cities to be visited.
"""

verify_solutions called by the prompt, each solu-
tion (queens) is tested. This test is exhaustive because
it analytically tests the queens’ position, not leaving out
a constraint.
Map Coloring
Problem: Listing 1 describes the well-known Map Col-
oring as a query.

Results: A first model which contains the constraint
all_different raised an error14 but was corrected by
using another constraint modeling (i.e., with != instead
of all_different) through 2 iterations15. A further
run provides a one-shot success, however not recognized
as such, instead a solution was hallucinated for present-
ing to the user16. A further run firstly used the API
wrongly, but finds finally a correct solution17.

Comments: The solution can also be found on the
internet, however, this does not prevent from making
errors. Finally, also because the iterative approach is
used, a solution was found.
Traveling Salesperson Problem
Problem: Listing 1 describes the well-known TSP as a
query.
14It seems to be an implementation issue, see https://github.com/

chocoteam/choco-solver/issues/705
15coloring_cs_agent_sol2_gpt-4-1106-preview_ 20240529094847.txt
16coloring_cs_agent_sol2_gpt-4-1106-preview_ 20240529095157.txt
17coloring_cs_agent_sol2_gpt-4-1106-preview_ 20240529095612.txt

Results: In general, there are several recurring issues
when attempting to model constraints for the TSP (see
the error logs in Appendix Section 8). One major problem
is accurately modeling distance constraints, which often
leads to incorrect solutions. Similarly, the Hamiltonian
path constraints are difficult to model correctly, com-
pounding the problem. Additionally, there is frequent
misuse of the API. These misuses typically involve pro-
viding arguments in the wrong order or supplying an in-
correct number of arguments. As a result of these issues,
the solutions generated are often flawed. With GPT-4, no
solutions could be found with the resources at hand, but
with GPT-4o, some solutions were correctly identified.
However, no implementation was found that computes
all the test cases provided for verification. Overall, these
challenges underscore the complexity of effectively mod-
eling TSP constraints and highlight areas that require
significant improvements to find optimal solutions con-
sistently.

4.3. Implementation
The implementation, which utilizes LangChain and
Python, leverages ChatGPT-4 and ChatGPT-4o and is
available on a repository at Zenodo18. As a constraint

18https://doi.org/10.5281/zenodo.12794211
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Assistant:
There was a mistake in the code. It seems I incorrectly used the
‘solver.find_solution()‘ method, which only finds one solution, and I
didn’t convert the solution to the expected list format before passing
it to the verification function. I need to find all solutions and convert
each solution to a list of integers representing the positions of the
queens.
Let me correct the code.

Python_REPL (tool call 1/1):

from pychoco.model import Model
from test_tool import verify_solutions
model = Model("8-Queens")
# Create an array of 8 variables representing the positions of queens on a
# chess board
queens = model.intvars(8, 1, 8)
# Add constraints
for i in range(8):

for j in range(i + 1, 8):
# Queens cannot be on the same row
model.arithm(queens[i], "!=" , queens[j]).post()
# Queens cannot be on the same diagonal
model.arithm(queens[i], "-", queens[j], "!=", i - j).post()
model.arithm(queens[i], "-", queens[j], "!=", j - i).post()

# Find all solutions
solver = model.get_solver()
solutions = []
for solution in solver.find_all_solutions():

solutions.append([solution.get_int_val(queens[i]) for i in range(8)])
verify_solutions(solutions, "queen8")

Python_REPL (tool response):
92 of the 92 solutions are correct. Expected 92 solutions
Assistant:
The 8-queens problem has been successfully solved, and all 92 solutions are correct.
tool calls: 6, text messages: 6

Figure 3: Constraint model for 8-queens problem and last output

solver, we used PyChoco as a Python API for the con-
straint solver Choco19. The resources of ChatGPT are
limited in respect of context/prompt length. This ap-
proach causes the LLM to stop responding when the chat
size extends the allowed number of tokens, which easily
can occur because the chat includes the entire previous
chat history. The resulting chats are included in the pa-
per’s appendix and the repository. The implementation
can be used to rerun the experiments, and the data can be
utilized for further investigation in prompt engineering.

5. Discussion
Overall, across all problems, after initiating multiple
chats, each with several iterations, a model that can com-

19https://choco-solver.org/

pute a single solution could be found (see Appendix sec-
tions 3 to 6). In Appendix Section 9, we document the
number of iterations per experiment, i.e., calls to the
Python interpreter (”Tool Calls”) and answers given by
the LLM (”Text Messages”). Nevertheless, for the TSP, we
could not find a model that computes all solutions. The
iteration was stopped by the LLM, if no changes occurred
or if too many tokens were used. So the paper’s result
is that in principle constraint models for well-known
problems can be computed, however, not in any cases.

An interesting observation is that the generated vari-
able names within the model are always semantically
meaningful (e.g., "queens") and not arbitrary. This likely
occurs because LLMs statistically favor names that have
been previously encountered.

In this paper, we use well-known constraint problems,
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Listing 2: Non-deterministic results

- correct
model.arithm(queens[i], "!=" , queens[j] + (j - i)).post()
model.arithm(queens[i], "!=", queens[j] - (j - i)).post()

- correct
model.arithm(qs[i], "-", qs[j], "!=" , j - i).post()
model.arithm(qs[j], "-", qs[i], "!=" , j - i).post()

- wrong
model.abs(queens - queens).ne(i - j).post() # Diagonal constraint
model.abs(queens - queens).ne(j - i).post() # Diagonal constraint

- wrong
model.arithm(queens[i], "-", queens[j], "!=", i - j).post()
model.arithm(queens[i], "+", queens[j], "!=", i + j + 2).post()

- does not find all solutions
diag1 = [model.int_offset_view(queens[i], i) for i in range(n)]
diag2 = [model.int_offset_view(queens[i], -i) for i in range(n)]
model.all_different(diag1).post()
model.all_different(diag2).post()

- wrong
model.arithm(queens[i], "!=" , queens[j]).post() # Different columns
model.arithm(queens[i], "-", i, "!=" , queens[j], "-", j).post() # Different diagonals (left-

top to right-bottom)
model.arithm(queens[i], "+", i, "!=" , queens[j], "+", j).post() # Different diagonals (left-

bottom to right-top)
- wrong

model.all_different([queens[i], queens[j]]).post()
model.arithm(queens[i], "-", queens[j], "!=" , j - i).post()
model.arithm(queens[i], "+", queens[j], "!=" , j - i).post()

Listing 3: Verifying a solutions for N-queens through testing the queens’ positions.

def is_valid_solution(queens):
n = len(queens)
assert type(queens) == list, "expected list of ints"
for i in range(n):

for j in range(i + 1, n):
# Check if queens are in the same row
if queens[i] == queens[j]:

return False
# Check diagonals: if the difference between the column indices equals
# the difference between the row indices, they’re in the same diagonal
if abs(queens[i] - queens[j]) == abs(i - j):

return False
return True

which, of course, can only be a first step for leveraging
LLMs in knowledge acquisition. The next steps would be
to supply new, unknown problems, also industrial ones,
e.g., by giving tables of correct variable combinations
(configurations) in table constraints and generating ab-
stracted constraint models. However, Listing 1 shows a
potential way of representing formally a problem as a
query which probably can be used for other tasks.

There are several general problems identified: the pro-
gram persistently uses the PyChoco API incorrectly and
often hallucinates PyChoco functions. This could not be

prevented by providing the API definition in the prompt,
because the complete definition extends the number of
possible tokens we could send to the LLM.

Additionally, the chats are not stable and can vary
significantly even with the same prompt. This instability
persists even with temperature set to 0 and a fixed seed,
making chats non-deterministic.

The used prompts should be further developed to
achieve the intended general generation of knowledge
models; in other words, prompt engineering for knowl-
edge modeling needs to be elaborated. Few-Shot Prompt-
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ing [20] could be used to encourage the model to produce
more consistent outputs and adhere more closely to given
instructions.

The approach of first creating syntactically correct
models and then verifying them to ensure semantic ac-
curacy could be successfully demonstrated (see Listing
3). Because we use a test-driven semantic verification
this verification depends on the quality of the used test
cases. For example, the N-queen problem was exhaustive
because of an analytical-based verification and not an
enumeration of test cases. Furthermore, writing tests
for knowledge-based tasks is, in our experience, typi-
cally easier than writing knowledge models, hence, the
experts’ tasks of creating formal constraints and also con-
figuration models will, in our opinion, shift from writing
models to writing tests - and let us write the models
through an LLM. Thus, the knowledge model develop-
ing process probably, with the presented approach, can
be executed by domain experts not only by knowledge
engineers.

The paper offers, furthermore, an easy way to begin
with iterative LLM prompting. Moreover, it is suggested
to use the LLM for creating a new configuration language
by exploiting the hallucination capabilities.

6. Conclusions
The paper presents the first steps in supporting the for-
malization task in constraint modeling with LLMs, i.e.,
the mapping of a well-known problem into a constraint
representation of a certain constraint language, here Py-
Choco, with large language models. By taking various
constraint problems, formulating generally applicable
prompts, and doing so in an iterative manner which in-
cludes syntactic and semantic verification processes, the
LLM could generate appropriate and correct constraint
models. Through the iteration, in-between errors related
to syntax and semantics were automatically corrected.
Further work will include a quantitative evaluation of the
method, a comparison of different LLMs, as well as the
generation of constraint models for unknown problems.
In total, this paper provides a first step into a new kind
of constraint and configuration modeling approach with
LLMs.
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Abstract
A product configurator enables the configuration of a customizable product while constraining possible variations. Users
typically interact with a product configurator via a graphical user interface. A complex product can be composed of
components and parameters that are not easily understandable for non-experts which can prevent them from effectively
configuring the product. In this paper, we propose a configuration copilot, an interactive chat-based interface that allows users
to iteratively configure a product by describing their requirements in natural language. Our framework leverages the Natural
Language Processing (NLP) capabilities of advanced pre-trained Large Language Models (LLMs) alongside the robustness of
constraint-based product configurators. We introduce a technical architecture that accurately formalizes constraints from
natural language inputs, identifies valid product configurations based on a defined product line and specified constraints
using a constraint solver, and communicates the resulting product configurations back to the end user in natural language.
We demonstrate and evaluate the configuration copilot on two use-cases: The configuration of the GoPhone feature model
(Boolean feature assignments), and the configuration of a metro wagon (more general configuration parameters).

Keywords
Product Configuration, Constraints, Feature Models, Large Language Models, Copilot

1. Introduction
Product configuration involves creating customized prod-
ucts from predefined components while satisfying con-
straints that limit configurable parameters and possible
combinations [1]. A product configurator is a software
tool that allows users to configure a product, commonly
through a graphical user interface and often in a web-
based context. Therefore, interface and interaction de-
sign plays a major role in the development of a product
configurator but is often overlooked [2]. This observa-
tion is especially relevant when complex products are
configured by non-expert users. The meaning of config-
urable components and parameters may not be obvious
which prompts a need for explanation and introduces a
learning curve.

As an alternative to GUI-based interactions with prod-
uct configurators, we propose a configuration copilot
that offers a text-based chat interface. Uninformed users
shall be able to describe their requirements in natural lan-
guage without knowledge of the concrete parameters to
set and components to select. The copilot shall then con-
figure the product and respond with a valid configuration
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complying with the initial requirements. The user shall
be able to interactively refine the product configuration.

We utilize a pre-trained Large Language Model (LLM)
for the processing of natural language. Recent advances
in this field have enabled use cases that require the un-
derstanding and generation of not only natural language
but also code. Well-known limitations include a lack
of reliability, guaranteed correctness, domain-specific
knowledge in general-purpose LLMs, and limited reason-
ing abilities [3]. In our configuration copilot, we address
these shortcomings by combining a LLM with a con-
straint solver. While the strengths of the LLM are utilized
in the processing of the natural-language requirement
descriptions, the reasoning to find valid configurations
is done by the constraint solver.
In this paper, we first describe LLMs and constraint-

based product configuration in Section 2 and related work
in Section 3. We detail the technical architecture of the
configuration copilot in Section 4, and present an eval-
uation based on the two use-cases of configuring the
GoPhone feature model and a metro wagon in Section 5.
We conclude the paper with a summary, a limitation
statement, and future work in Section 6.

2. Background

2.1. Large Language Models
Pre-training task-agnostic aspects of natural language
processing (NLP) tasks is a central concept of LLMs.
The Transformer architecture enables this approach
on a large scale through parallelization. Transformer
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models are able to capture complex patterns and long-
range-dependencies in texts through the multi-head
self-attention mechanism. Compared to previous state-
of-the-art models such as recurrent neural networks
(RNNs) or long short-term memory networks (LSTMs)
a performance improvement in various NLP tasks is ob-
served [4, 5].
Decoder-only models are a subclass of Transformer-

based architectures and are primarily used for sequence-
to-sequence tasks such as translation. Auto-regressive
models predict the next single token (sub-word) by max-
imizing the log-likelihood given all previous words and
the model parameters [4].
The size and quality of the pre-training corpus have

a strong impact on performance [5]. LLMs are trained
on publicly available data and excel in general language
tasks. Highly specialized tasks require expert knowl-
edge that is often not included in the training data, and
therefore LLMs may not be able to generate accurate
output. Task-specific knowledge can be introduced to a
general-purpose LLM through domain customization by
employing techniques like prompting and fine-tuning [6].

2.2. Constraint-based Product
Configuration

Product configuration involves selecting and assembling
various components and options to meet customer re-
quirements and constraints. Its complexity arises from
the vast number of possible combinations and the need
to satisfy all technical restrictions and customer prefer-
ences. To handle this complexity, powerful technolo-
gies have been developed and established in the last
decades. Constraint-based systems shall be highlighted
here, which allow to represent the product line and its
technical restrictions and requirements in a clean, logical
way, thereby ensuring that only valid configurations are
generated. The core of such systems lies in the ability
to handle complex and combinatorial search spaces effi-
ciently through the use of advanced solving algorithms,
such as backtracking, forward checking, and constraint
propagation. This facilitates the efficient generation of
feasible solutions while pruning invalid combinations.
An important subdomain of configuration problems

are feature models for the representation of product
lines [7]. Constraint-based techniques are especially well-
suited for such feature models, because of the simple
language and the mainly Boolean type of the variables.

MiniZinc is a constraint language that can be used to
represent configuration problems [8]. Several efficient
solvers can process this language and can therefore be
used as the backend of a configurator.

A product configurator is almost always an interactive
system [9]. A graphical user-interface (GUI) allows to
enter the user requirements, which are passed on as input

to the constraint solver. The results of the solver are
presented on the GUI, and the user can vary or refine
her/his input specification and the solver is called again.
To design and implement a configurator GUI can be

a challenging task, because the possible interactions are
diverse, like collecting the requirements, reporting in-
valid constellations, representing a solution, showing a
performance value of a solution, etc. In addition, every
modification of the product (line) requires a review and
possibly and adjustment of the GUI.

In the following sections, we demonstrate how to elim-
inate the need for a product-specific GUI by utilizing an
LLM to engage in dialogue with the user.

3. Related Work
Various approaches to improve the reliability, the per-
formance in domain-specific tasks, and the reasoning
abilities of LLMs are described in literature.
Few-shot prompting effectively introduces domain-

specific knowledge and improves the task-specific per-
formance of LLMs by adding a small set of example inter-
actions (input and expected output) to the prompt [10].
Chain-of-thought prompting was shown to improve the
reasoning abilities of LLMs especially in more complex
tasks by providing exemplary intermediate reasoning
steps [11].
Grammar prompting is used when a specific output

format is expected. Wang et al. describe how a minimal
specialized grammar is obtained in a grammar special-
ization process by selecting a specialized grammar as a
subset of the full grammar using an LLM and minimiz-
ing it by parsing the output and forming the union of
used rules. In their approach, constrained decoding then
validates the output syntax [12]. Similarly, Poesia et al.
presented the Synchromesh framework: Using a few-shot
prompting technique, semantically similar examples are
selected from a larger pool for a given natural language
prompt via a similarity metric named Target Similarity
Tuning. Constraints are enforced through Constrained
Semantic Decoding to verify syntax validity, scoping, or
type checks. During the token-by-token construction of
the LLM output, a Completion Engine provides all valid
tokens that can further extend a partial program towards
a full correct program [13].
Neuro-symbolic approaches focus on combining the

strengths of neural networks and symbolic reasoners.
Pan et al. introduced the Logic-LM framework which
achieves a performance improvement of 18% on logical
reasoning datasets over chain-of-though prompting. The
framework translates the natural-language input into
symbolic formulations and utilizes a symbolic reasoner
to obtain the answer [14].
This paper builds upon our previous work [15] that
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studied the reliable generation of formal specifications
with LLMs using algorithmic post-processing. We extend
the approach towards product configuration by applying
post-processing to reliably integrate a constraint solver.
In addition to previously described guaranteed syntac-
tically valid output, this extension enables arbitrary se-
mantic constraints.

4. Configuration Copilot
This section presents the technical details of the configu-
ration copilot that combines LLMs with constraint-based
configuration.

4.1. Architecture
Figure 1 shows an overview of the architecture. A user
configures a product by providing a natural-language
description of their requirements. The Formalizer (see
Section 4.2) is a specialized LLM-based component that
translates the requirements to constraints. The Configu-
ration Engine is a constraint solver that attempts to find a
configuration that satisfies the general constraints of the
product line combined with the user constraints provided
by the Formalizer. An Interpreter (see Section 4.4) trans-
lates the configuration back to natural language. The con-
figuration copilot then responds with a natural-language
description of the configured product accompanied by
the full technical specification (product configuration
as determined by the Configuration Engine). The user
can then further refine the product configuration inter-
actively.

4.2. Formalizer
The input to the Formalizer is a natural-language de-
scription of arbitrary product requirements provided by
a non-expert. Utilizing the NLP capabilities of LLMs, the
formalization can be viewed as a sequence-to-sequence
translation task from natural language to a formal speci-
fication. The LLM is tasked with natural language under-
standing and the identification of corresponding parame-
ters or components of the product (line), but is specifically
not tasked with reasoning (e.g., constraint satisfaction).
While pre-trained LLMs achieve a strong performance on
general tasks, they do not have knowledge of the specific
product (line) to configure as corresponding data is not
included in their training corpus [5, 6]. Additionally, the
probabilistic nature of the token-by-token output con-
struction of LLMs does not provide any guarantees in
the correct generation of valid constraints [4].

Our framework for reliable code generation addresses
domain-customization and reliable output generation
through few-shot prompting and algorithmic post-
processing [15].

Figure 1: Architecture of the Configuration Copilot

Few-shot prompting has been shown to effectively ex-
tend the capabilities of LLMs with domain knowledge
while requiring significantly less training data than fine-
tuning [10]. Knowledge of the product line is incorpo-
rated through a system prompt describing the product
line with its parameters and components. A small set
of examples is appended as pairs of natural-language in-
puts and expected outputs to provide the LLM with more
context and guide it towards the expected behavior.
Rather than generating output directly in a specific

constraint language, an intermediary JSON-based lan-
guage is used, which can then be easily transpiled. The
transpiler parses the JSON constraint representation and
maps its elements to corresponding constructs of the
specific constraint language following predefined rules.
As JSON is widely used, pre-trained LLMs have more
often encountered JSON than less common constraint
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languages. Therefore, the generation of an intermediary
JSON output is closer to the LLMs capabilities. Addition-
ally, an intermediary language gives more control over
the expected output as available language constructs can
be constrained and tailored to the specific task. It also
decouples the Formalizer from the Configuration Engine
by enabling interchangeability of the concrete constraint
language. To generate a valid JSON for the Formalizer,
several state-of-the-art LLMs are evaluated and bench-
marked. Specialized code LLMs that are pre-trained on
the translation of natural language to code in a variety of
programming languages are believed to be more suitable
for the generation of structured JSON output. In our eval-
uation in Section 5, we selected four open-access LLMs:
Two code LLMs (CodeLLama [16] and Codestral [17]),
and two general-purpose instruction-tuned LLMs (Meta
Llama 3 [18] and Mistral [19]).
Algorithmic post-processing guarantees the correct

generation of the JSON-based intermediary language and
is depicted in Figure 2. As the auto-regressive Trans-
former model generates its output step-by-step as tokens,
the post-processor engages into every generation step:
For each step, the LLM generates a list of candidates for
the next token based on the prompt and the generated
output so far. Sorted by priority as evaluated by the
LLM, the post-processor determines whether the token
candidate represents a valid continuation of the partial
output sequence (partial intermediary JSON). The valid
token candidate with the highest priority is then selected,
handed back to the LLM, and added to the partial JSON,
extending it one step further. A completeness checker
evaluates after every step to determine, if the JSON is
complete [15].
The JSON-based intermediary language is formally

defined by a JSON schema specification and the post-
processor is therefore a specialized JSON validator that
can strictly validate any partial JSON against the schema.
This implementation is based on deterministic finite au-
tomata (DFA). Each generic JSON language element (ob-
ject, list, string, number, etc.) is represented by a DFA,
keeping track of the current state. The token generated
by the LLM is broken down to single-character inputs
for the JSON validator. Depending on the schema and
the current state, only a set of characters is accepted. If
a character is rejected, the current token is considered
invalid, and the validator state is rolled back to the last
valid token. State changes are triggered by characters
until the final state is reached. When the DFA reaches
its final state, the generated valid JSON is complete [15].

4.3. Configuration Engine
Given the user constraints combined with the complete
product line definition, the Configuration Engine evalu-
ates whether the constraints are satisfiable and returns

a configuration. The product line as well as the user
constraints are modelled in the MiniZinc constraint lan-
guage [8]. The solver returns the full product configura-
tion as a list of variable assignments which serves as an
input to the Interpreter. In this context, we consider the
constraint solver a given technology that will neither be
further described nor evaluated.

4.4. Interpreter
The Interpreter is an LLM module that explains the prod-
uct configuration found by the Configuration Engine.
The goal is to provide the user with a less technical sum-
mary that is understandable for non-experts.
Structured few-shot prompting [10] is sufficient for

this use-case as LLMs generally perform well in the trans-
lation from a formal specification to a natural-language
summary as all facts are directly present in the prompt.
The context given to the LLM consists of three aspects:
The product line definition, instructions, and examples.
The LLM is prompted to evaluate which properties and
components are most important to be included in the
summary. This is achieved by adding importance hints
to the product line definition, and by appending the orig-
inal user input. Properties and components mentioned
directly in the user input are given more importance and
are more likely to be included in the summary. The result
is a more natural context-aware explanation of the most
relevant aspects in the product configuration.

5. Evaluation
The presented configuration copilot is evaluated on two
use-cases: The conceptually simpler task of configuring
a feature model, and the configuration of a metro Wagon.

5.1. Feature Model (GoPhone)
The first use-case for the evaluation of the presented
copilot is the configuration of a feature model. An unin-
formed user shall be supported in the configuration of
the GoPhone from the SPLOT project [20].
The GoPhone is a feature model comprised of 77 fea-

tures with some being mandatory, optional, dependent
on other features, or mutually exclusive. For example,
the feature call is mandatory for the GoPhone, the fea-
ture accept_incoming_call is mandatory for call, but
show_missed_calls and show_received_calls are op-
tional.

Feature assignments are Boolean, either the feature is
included in the product configuration (true) or the fea-
ture is not included (false). The product line definition
is a MiniZinc program that was directly derived from the
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Figure 2: Detail view of the Formalizer with post-processing

feature model. Each feature is a Boolean variable. Con-
straints limit the combination of features and therefore
limit possible product configurations.
A non-expert user starts by describing their require-

ments for the phone in natural language:

I need a basic phone to call people and browse
the web but I don't play games. I also want to
keep track of my appointments.

This natural-language description is then formalized
to the intermediary JSON language:

{
"features": [

{
"name": "make_call",
"value": true

},
{

"name": "browsing",
"value": true

},
{

"name": "game",
"value": false

},
{

"name": "calendar_entry",
"value": true

}
]

}

This list of solver-independent constraints is then tran-
spiled to MiniZinc constraints:

constraint make_call = true;
constraint browsing = true;
constraint game = false;
constraint calendar_entry = true;

Together with the MiniZinc program (product line
definition), the Configuration Engine evaluates the con-
straints and returns a full product configuration of
the GoPhone for the specific user requirements as a
list of Boolean feature assignments. In this work, the
Gecode [21] solver was used without further configu-
ration or optimization. The Interpreter converts this
configuration back to natural language and returns it to
the user. An example for such an output is (the technical
specification is shortened for brevity):

Your GoPhone can manage ringing tones, messages,
and browse the web. It can also manage calls,
read multimedia, and display photos. It has a
calendar entry feature and an address book
processing system. However, it does not play
games, organize tasks, or have currency
conversion features.

Here is the full technical configuration:

GoPhone = true;
manage_ringing_tones = true;
[...]
browse = true;
[...]
game = false;
play_games = false;
install_games = false;
[...]

The crucial and potentially failing component of the
presented architecture is the Formalizer: the probabilistic
nature of the underlying LLMs does not provide strict
guarantees. Especially the translation of the user’s re-
quirements to the feature assignments is subject to un-
certainty. A formal evaluation of the Interpreter is not
done because the correctness requirements for the config-
uration summary are less strong and LLMs are generally
known to perform well on simple summarization tasks
when the facts are directly provided. It is also unsuitable
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to define a single reference solution as a large variety
of summaries (with various feature assignments being
explained or not explained) could be considered correct.
Ultimately, users needs to decide whether the summary
was helpful or not.

The Formalizer was evaluated on a custom dataset of
30 test cases. 15 test cases create a new configuration
from scratch, and 15 test cases evaluate a re-configuration
where a given configuration is modified. Each test case
consists of natural-language input mentioning between
two and six feature requirements in the text (and up to
30 given feature assignments for modification test cases),
and the expected feature assignments in JSON. Using the
natural-language input, the Formalizer generates feature
assignments in JSON. This output is compared to the ex-
pected output. The comparison is conceptually challeng-
ing due to the intrinsic ambiguity of natural language. In
many cases, one could argue for multiple options of fea-
ture assignments to be considered a correct translation.
In this evaluation, we hand-crafted the dataset to be less
ambiguous. However, the features of the GoPhone are
in themselves sometimes not obviously distinguishable,
and multiple features may be equally suitable. For exam-
ple, the feature browsing is an optional sub-feature of
the more general parent feature browse. This ambiguity
was addressed by encoding very similar features to the
same representation. Therefore, all defined synonymous
features are considered a correct feature assignment for
a requirement. However, the feature assignment was
not limited to leaf features because doing so would add
reasoning requirements to the Formalizer. Consider the
leaf features play_games and install_games, and the
parent feature game. If a user only mentions games in
their descriptions, the more abstract feature game shall
be assigned. Otherwise, the LLM would have to reason
about a proper assignment of leaf features, deviating
from the most direct translation from natural language
to a feature assignment. The reasoning regarding further
(sub-)feature assignments shall be done by the Configu-
ration Engine.
A similarity metric based on the Jaccard distance be-

tween sets [22]was used to compare each pair of expected
and actual output: Let 𝑇 and 𝐹 be the sets of feature
names in the expected output where the feature value
is 𝑇 𝑟𝑢𝑒 and 𝐹𝑎𝑙𝑠𝑒, respectively. Similarly, let ̂𝑇 and ̂𝐹 be
the sets of feature names in the actual output where the
feature value is 𝑇 𝑟𝑢𝑒 and 𝐹𝑎𝑙𝑠𝑒, respectively. The Jaccard
similarities are:

For the 𝑇 𝑟𝑢𝑒 sets:

𝑆𝑇 =
|𝑇 ∩ ̂𝑇 |
|𝑇 ∪ ̂𝑇 |

For the 𝐹𝑎𝑙𝑠𝑒 sets:

𝑆𝐹 =
|𝐹 ∩ ̂𝐹 |
|𝐹 ∪ ̂𝐹 |

Table 1
Evaluation Results for the GoPhone Formalization
S = Similarity score
F1 = F1 score

Model [Size/Quantization] S F1
CodeLlama 34B/Q4 [Link] 0.65 0.74
Codestral 22B/Q4 [Link] 0.79 0.86
Meta Llama 3 8B/Q8 [Link] 0.46 0.58
Mistral 7B/Q8 [Link] 0.69 0.79

The overall similarity between the expected and actual
output 𝑆 as the weighted average of 𝑆𝑇 and 𝑆𝐹 is:

𝑆 =
𝑆𝑇 ⋅ |𝑇 ∪ ̂𝑇 | + 𝑆𝐹 ⋅ |𝐹 ∪ ̂𝐹 |

|𝑇 ∪ ̂𝑇 | + |𝐹 ∪ ̂𝐹 |
The result is a number between 0 and 1, with 0 indi-

cating no similarity, and 1 indicating a perfect match. In
this metric, the identification of features in the natural
language as well as the Boolean assignment are consid-
ered.

Similarly, the precision 𝑃, recall 𝑅 and F1 score 𝐹1were
calculated:

𝑃 =
|𝑇 ∩ ̂𝑇 | + |𝐹 ∩ ̂𝐹 |

| ̂𝑇 | + | ̂𝐹 |

𝑅 =
|𝑇 ∩ ̂𝑇 | + |𝐹 ∩ ̂𝐹 |

|𝑇 | + |𝐹 |

𝐹1 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

We selected four open-access LLMs from HuggingFace
to be evaluated in the context of the configuration copilot,
two code models, and two general-purpose models. Ta-
ble 1 summarizes the evaluation results for the GoPhone
use-case per LLM. Codestral 22B/Q4, a state-of-the-art
code model, performed best. However, Mistral 7B/Q8
outperformed the larger code model CodeLLama 34B/Q4
against our expectations. This shows that the perfor-
mance of LLMs is use-case specific and must be evaluated.
We found that the performance degrades as instances be-
come more complex. Remedies for this observation are
the use of larger models, tuning the technical approach,
or future improvements of LLMs themselves. Consid-
ering the remaining ambiguity of natural language, the
results indicate reasonable performance in this use-case
as the majority of feature requirements was formalized
correctly.

5.2. Metro Wagon
The second use-case for the evaluation is a metro Wagon
configuration problem (see [23]) that uses not only
Boolean but also numeric variables and arrays, where
a configurable product has components that can occur
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Wagon

length_mm: 10000...20000
nr_passengers: 50..200
nr_seats: 0..200
standing_room: 0..200

nr_seats + standing_room = nr_passengers
nr_seats + standing_room/3
≤ 4*length_mm/1000
nr_seats = count(Seat)
standing_room>0 → count(Handrail)=1
all-equal-type()
all-equal-color()
maximize nr_passengers/length_mm

Handrail
type: {standard, pre-
mium}

Seat
type: {standard,
premium, special}
color: {blue, red, white}

type=special → color=red

0..1 0..80

Figure 3: Class diagram of theWagon example. Default values
are underlined. Wagon.all-equal-type() stands for a constraint
that all sub-parts must have the same type except for special.
Wagon.all-equal-color() stands for a constraint that all associated
seats (except if type=special) must have the same color.

multiple times (similar to generative constraint satisfac-
tion [24] or cardinality-based feature modelling [25]).
A metro train wagon has as configurable attributes

the size (length in millimetres: 10000..20000) and the
expected load (number of passengers: 50..200) which can
be realized as seats or standing room. As components
we consider only seats (max. 4 per meter of length) and
handrails, and their number is configurable.

There is at most one handrail in a wagon (mandatory
if there is standing room) and it has a configurable type:
“standard” or “premium”.

A single seat consumes standing room for 3 persons
and has as configurable attributes the type (“standard”,
“premium”, “special”) and the color (“blue”, “red”, “white”).
The type is constrained such that standard is not allowed
to be mixed with premium (for seats and handrails). The
color of all seats must be the same, except for special
seats which have to be “red”.
Figure 3 shows a UML class diagram for this sample

specification, including pseudo code for all constraints.
A non-expert user starts by describing their require-

ments for the metro Wagon in natural language:

The wagon should accommodate more than 120 people
with room for 40 to sit. Seats should be red.

This natural-language description is then formalized
to the intermediary JSON language:

{
"nr_passengers": {

"type": "greaterThan",
"value": 120

},
"nr_seats": {

"type": "equals",
"value": 40

},
"seat_color": [

"red",
"red",
"red",
...

]
}

This list of solver-independent constraints is then tran-
spiled to MiniZinc constraints:

constraint nr_passengers > 120;
constraint nr_seats = 40;
constraint forall (i in 1..nr_seats)

(seat_color[i] = red);

Together with the MiniZinc program (product line
definition), the Configuration Engine evaluates the con-
straints and returns a full product configuration of the
metro Wagon for the specific user requirements as a list
of value assignments to the configurable parameters. The
Interpreter converts this configuration back to natural
language and returns it to the user:

Your metro Wagon is 20 meters long, has space for
160 passengers with 40 red standard seats and a

standard handrail. There is also standing room
for an additional 120 people.

Here is the full technical configuration:

length_mm = 20000;
nr_passengers = 160;
nr_seats = 40;
standing_room = 120;
nr_handrails = 1;
handrail_type = standard;
seat_color = [red, red, red, ...];
seat_type = [standard, standard, standard, ...];

The Formalizer for the metro Wagon use-case was
evaluated, like the GoPhone Formalizer, on a diverse
set of 30 test cases (pairs of input and expected output)
with 15 creating a new configuration and 15 modifying
a given configuration (re-configuration). To evaluate
the similarity in this use-case, the previously described
similarity metric based on the Jaccard distance between
sets for Boolean feature assignments was extended to
the more general use-case. This extension is necessary
to enable the evaluation of the value assignment for the
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Table 2
Evaluation Results for the Metro Wagon Formalization
S = Similarity score

Model [Size/Quantization] S
CodeLlama 34B/Q4 [Link] 0.77
Codestral 22B/Q4 [Link] 0.78
Meta Llama 3 8B/Q8 [Link] 0.68
Mistral 7B/Q8 [Link] 0.72

extended variable types (i.e., strings, numbers, arrays).
While the Jaccard distance remained the basis for the
similarity metric, a type-specific value metric was applied
to each configuration parameter that is present in both,
the expected and the actual output. In addition to the
parameters being present, the total similarity is adjusted
according to the value similarities as well. The type-
specific metric considers:

• for numeric values: operator (’=’, ’>’, ’<’, etc.) and
value distance relative to the parameter-specific
domain (value range)

• for array values: length and positional item equal-
ity

• for string-enumerated values: exact value match

Let 𝐶 be the set of configuration parameter names in
the expected output and let �̂� be the set of configura-
tion parameter names in the actual output. The Jaccard
similarity 𝑆𝐽 is:

𝑆𝐽 =
|𝐶 ∩ �̂�|
|𝐶 ∪ �̂�|

Let 𝑐 be a matching parameter that is in both, the ex-
pected and the actual output, and let 𝑆𝑣(𝑐) be the type-
specific value similarity (between 0 and 1) of 𝑐 between
the expected and the actual output. The value-adjusted
Jaccard similarity 𝑆 is then:

𝑆 =
∑𝑐 ∈ 𝐶∩�̂� 𝑆𝑣(𝑐)

|𝐶 ∪ �̂�|
The evaluation of the F1 score is omitted because it

does not provide any additional value, as it appears to
correlate strongly with the already rather strict similarity
score 𝑆. Table 2 summarizes the evaluation results for
the metro Wagon use-case per LLM. Codestral 22B/Q4
performed best again with a similar score. However, the
other three models consistently improved their score
compared to the GoPhone use-case. While the metro use-
case in itself is more complex, the domain size (amount
of named parameters) is lower, which may be the reason
for the higher performance. Overall, the results again
indicate a reasonable performance for the metro Wagon
use-case.

6. Conclusion
This paper presented a configuration copilot that enables
non-expert users to configure a product in natural lan-
guage. The cooperative neuro-symbolic approach com-
bines an LLM with a constraint solver to reliably support
a product configuration. An early evaluation on the two
use-cases of configuring the GoPhone feature model and
a metro Wagon indicated practical feasibility. We believe
that a configuration copilot is a valuable extension to
GUI-based product configurators. For a productive im-
plementation, limitations and future work mentioned in
Sections 6.1 and 6.2 should be addressed.

6.1. Limitations
A limitation of our work is the size of the use-cases. Com-
pared to real-world scenarios, the evaluated GoPhone
feature model and metroWagon are smaller and less com-
plex. Additionally, the evaluation was done on a limited
manually created dataset with 30 instances per use-case.
While the most critical aspect of the architecture, the
Formalizer, was evaluated, a formal evaluation of the In-
terpreter and the full configuration pipeline were omitted
for the reason that a user study is required to evaluate
these aspects. This paper demonstrates that creating a
productive configuration copilot is feasible but does not
study the extent to which value is provided to real users
in a real-world scenario.

6.2. Future Work
To address the limitations of this paper, the configuration
copilot shall be evaluated on more complex use-case from
practice in a user study. The configuration copilot itself
shall be extended: When a configuration as specified
by the user is unsatisfiable, the configuration copilot
shall suggest alternatives instead of reverting to the last
satisfiable configuration. Additionally, soft constraints
in the form of ’If possible, I would like to ...’ shall be
introduced.
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